Preferred Language
Articles
/
lxdrYI8BVTCNdQwCt3RK
Concepts of statistical learning and classification in machine learning: An overview
...Show More Authors

Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in categorical outcomes, with the overarching goal of supervised learning being to enhance models capable of predicting class labels based on input features. This review endeavors to furnish a concise, yet insightful reference manual on machine learning, intertwined with the tapestry of statistical learning theory (SLT), elucidating their symbiotic relationship. It demystifies the foundational concepts of classification, shedding light on the overarching principles that govern it. This panoramic view aims to offer a holistic perspective on classification, serving as a valuable resource for researchers, practitioners, and enthusiasts entering the domains of machine learning, artificial intelligence and statistics, by introducing concepts, methods and differences that lead to enhancing their understanding of classification methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
Rock facies classification and its effect on the estimation of original oil in place based on petrophysical properties data
...Show More Authors

The most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
A Statistical Study of the Amount of Radiation Generated from Communication Towers in the Nineveh Plain Region, Baghdeda
...Show More Authors

This research presents a statistical study of radiation generated from communication towers in the Nineveh Plain region Baghdeda. The intensity of radiation energy was measured at 10 meters away from the communication tower in different locations, using a (1PC XH-901 Dosimeter/ Personal Dose Alarm / Radiation Detector, dosage rate: 0.01 μSv/h to 150μSv/h) to measure the amount of radiation at various times. Energy densities were measured and compared with standard limits provided by other authorities, such as the International Committee for Radiation Protection. Results were analyzed using SPSS version 26 to implement the data. The results show that the means of the radiation levels measured at all the zones do not statistically differ

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Middle-east Journal Of Scientific Research
Question Classification Using Different Approach: A Whole Review
...Show More Authors

Preview PDF
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
Hybrid vs Ensemble Classification Models for Phishing Websites
...Show More Authors

Phishing is an internet crime achieved by imitating a legitimate website of a host in order to steal confidential information. Many researchers have developed phishing classification models that are limited in real-time and computational efficiency.  This paper presents an ensemble learning model composed of DTree and NBayes, by STACKING method, with DTree as base learner. The aim is to combine the advantages of simplicity and effectiveness of DTree with the lower complexity time of NBayes. The models were integrated and appraised independently for data training and the probabilities of each class were averaged by their accuracy on the trained data through testing process. The present results of the empirical study on phishing websi

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Crossref
Publication Date
Sat Sep 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Brain Tumor Detection Method Using Unsupervised Classification Technique
...Show More Authors

Magnetic  Resonance  Imaging  (MRI)  is  one  of  the  most important diagnostic tool. There are many methods to segment the

tumor of human brain. One of these, the conventional method that uses pure image processing techniques that are not preferred because they need human interaction for accurate segmentation. But unsupervised methods do not require any human interference and can segment   the   brain   with   high   precision.   In   this   project,   the unsupervised  classification methods have been used in order to detect the tumor  disease from MRI images.    These metho

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Weighted k-Nearest Neighbour for Image Spam Classification
...Show More Authors

E-mail is an efficient and reliable data exchange service. Spams are undesired e-mail messages which are randomly sent in bulk usually for commercial aims. Obfuscated image spamming is one of the new tricks to bypass text-based and Optical Character Recognition (OCR)-based spam filters. Image spam detection based on image visual features has the advantage of efficiency in terms of reducing the computational cost and improving the performance. In this paper, an image spam detection schema is presented. Suitable image processing techniques were used to capture the image features that can differentiate spam images from non-spam ones. Weighted k-nearest neighbor, which is a simple, yet powerful, machine learning algorithm, was used as a clas

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
Synthetic Aperture Radar Image Classification: a Survey: Survey
...Show More Authors

In this review paper, several studies and researches were surveyed for assisting future researchers to identify available techniques in the field of classification of Synthetic Aperture Radar (SAR) images. SAR images are becoming increasingly important in a variety of remote sensing applications due to the ability of SAR sensors to operate in all types of weather conditions, including day and night remote sensing for long ranges and coverage areas. Its properties of vast planning, search, rescue, mine detection, and target identification make it very attractive for surveillance and observation missions of Earth resources.  With the increasing popularity and availability of these images, the need for machines has emerged to enhance t

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
Enhanced Supervised Principal Component Analysis for Cancer Classification
...Show More Authors

In this paper, a new hybridization of supervised principal component analysis (SPCA) and stochastic gradient descent techniques is proposed, and called as SGD-SPCA, for real large datasets that have a small number of samples in high dimensional space. SGD-SPCA is proposed to become an important tool that can be used to diagnose and treat cancer accurately. When we have large datasets that require many parameters, SGD-SPCA is an excellent method, and it can easily update the parameters when a new observation shows up. Two cancer datasets are used, the first is for Leukemia and the second is for small round blue cell tumors. Also, simulation datasets are used to compare principal component analysis (PCA), SPCA, and SGD-SPCA. The results sh

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (5)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Intelligent Automation & Soft Computing
A Novel Classification Method with Cubic Spline Interpolation
...Show More Authors

View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Feb 25 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Using Classification of Brown risks in Evaluation of the internal control system: Application Research in Karbala University
...Show More Authors

Internal control system is a safety valve that preserves economic units assets and ensure the accuracy of financial data, as well as to obligation in the laws, regulations, administrative policies ,and improve the efficiency, effectiveness and economic of operation, so it has become imperative for these units attention to internal and developed control system The research problem in exposure the economic units when the exercise of their business to many of the risks to growth or hinder the achievement of its objectives and the risks (financial, operational, strategy, risk) and not it rely on risk Assessment according to modern scientific methods, as in Brown's risk Classification, Which led to the weakness of the internal control identif

... Show More
View Publication Preview PDF
Crossref