Preferred Language
Articles
/
lxdrYI8BVTCNdQwCt3RK
Concepts of statistical learning and classification in machine learning: An overview
...Show More Authors

Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in categorical outcomes, with the overarching goal of supervised learning being to enhance models capable of predicting class labels based on input features. This review endeavors to furnish a concise, yet insightful reference manual on machine learning, intertwined with the tapestry of statistical learning theory (SLT), elucidating their symbiotic relationship. It demystifies the foundational concepts of classification, shedding light on the overarching principles that govern it. This panoramic view aims to offer a holistic perspective on classification, serving as a valuable resource for researchers, practitioners, and enthusiasts entering the domains of machine learning, artificial intelligence and statistics, by introducing concepts, methods and differences that lead to enhancing their understanding of classification methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of The College Of Education For Women
Audio Classification Based on Content Features
...Show More Authors

Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 05 2019
Journal Name
Journal Of The College Of Education For Women
Land Classification Wadi Al-Salam Basin
...Show More Authors

Dry environment study forms an important part in the field of applies geomorphology for
the wide rang of its lands which form most of the world, homeland, and Iraqi lands specially,
and what these lands include of scientific cases which needs to be searched and investigated.
They include rocks, land shapes, water supplements, its ancient soil and its active diggings are
all signs of the environment changes and effects that these lands under take over time, with
continuous remains of its features of characteristics under geo morphological dry
circumstances which works to slow change average, when the geomorphologic fearers varies
in this environment and what it contain of important economical resource. As to participl

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network
...Show More Authors

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Change detection of remotely sensed image using NDVI subtractive and classification methods.
...Show More Authors

Change detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue May 16 2023
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
Comparative Study of Anemia Classification Algorithms for International and Newly CBC Datasets
...Show More Authors

Data generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative st

... Show More
View Publication
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Level and Statistical Distribution of Thyroid Peroxidase and Thyroid Hormones in Iraqi patients with Type1 Diabetes Mellitus at Al-Karkh Side
...Show More Authors

Type 1 diabetes mellitus (T1DM) is an autoimmune disease frequently associated with autoimmune thyroid disease (AITD). The study is conducted at the Specialized Center for Endocrinology and Diabetes-Baghdad at Al-karkh side, during December 2013 up to April 2014. In this study, we investigate the prevalence of anti-thyroid peroxidase (anti-TPO) antibody in(80) type1 diabetic patients with (AITD) and (30) healthy controls .Blood samples are taken for investigation of thyroid tests by using Vitek Immunodiagnstic Assay System (VIDAS).Enzeme Linked Immunosorbent Assay (ELISA) is used to detect anti-thyroid antibody(anti-TPO). The results show that age, gender and BMI (body mass index) are similar in both groups, p>0.05. Among 80 type1 diabetic

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 04 2015
Journal Name
Journal Of Educational And Psychological Researches
The Effect of Instrumental Enrichment in the Acquisition of Geographical Concepts for First Grade Student in Intermediate school
...Show More Authors

The present study aims at knowing the effect of instrumental enrichment in the acquisition of geographical concepts for first grade student in intermediate school. The study is restricted in the students of first grade student in intermediate school\ The EducationalDirectorate of Rusafa for academic (2013/2014),for the purpose of achieving the objective, the following hypotheses:

There is no statistical significant different at the level of (0.5) between the scores of the experimental group  who study geography according to the instrumental enrichment and the scores of the control group who learned geographical according to the traditional methods.

    &nb

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 01 2018
Journal Name
Journal Of Educational And Psychological Researches
The effect of constructivist model of yager in acquiring the geographical concepts among first intermediate students in geography
...Show More Authors

The purpose of the study is to investigate the effect of the constructivist model of yager in acquiring the geographical concepts among first intermediate students in geography. The study was carried on based on the null hypothesis, which states, there is no significant difference at the level of (0.05) between the experimental group that follows yager model in learning the principles of geography, and the control group that studies the same subject considering the traditional methods of learning, the. To do so, a sample of (70) first-intermediate student were chosen purposefully from two random class for the academic year (2016-2017) divided into two groups. The selected schools located at Al-rusafa side in the city of Baghdad, as well

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
International Journal Of Literacy And Education
The availability of concepts and applications of artificial intelligence in the content of the chemistry textbook for the fourth scientific grade
...Show More Authors

View Publication
Crossref
Publication Date
Fri Oct 01 2010
Journal Name
Iraqi Journal Of Physics
Statistical Fluctuations of Energy Spectrum, Electromagnetic Transitions and Electromagnetic Moments in 136Xe Nucleus Using the Framework of Nuclear Shell Model
...Show More Authors

The fluctuation properties of energy spectrum, electromagnetic transition intensities and electromagnetic moments in nucleus are investigated with realistic shell model calculations. We find that the spectral fluctuations of are consistent with the Gaussian orthogonal ensemble of random matrices. Besides, we observe a transition from an order to chaos when the excitation energy is increased and a clear quantum signature of the breaking of chaoticity when the single-particle energies are increased. The distributions of the transition intensities and of the electromagnetic moments are well described by a Porter-Thomas distribution. The statistics of electromagnetic transition intensities clearly deviate from a Porter-Thomas distribution (i

... Show More
View Publication Preview PDF