Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in categorical outcomes, with the overarching goal of supervised learning being to enhance models capable of predicting class labels based on input features. This review endeavors to furnish a concise, yet insightful reference manual on machine learning, intertwined with the tapestry of statistical learning theory (SLT), elucidating their symbiotic relationship. It demystifies the foundational concepts of classification, shedding light on the overarching principles that govern it. This panoramic view aims to offer a holistic perspective on classification, serving as a valuable resource for researchers, practitioners, and enthusiasts entering the domains of machine learning, artificial intelligence and statistics, by introducing concepts, methods and differences that lead to enhancing their understanding of classification methods.
In accounting studies, more than one method is used to measure income and balance sheets elements. One of these methods is called the fair value, which use to determine the assets and liabilities ad it includes the benefits or self-satisfaction ability. This paper aims to focus on the importance of fair value as a basis of accounting measurement and its effects to achieve the relevant characteristics by using the equation is used by (Kythreotis) in his research, And Also , Editing this equation depending on the financial data and information of Iraqi Banks as a case.
The License Plate (LP), is a rectangular metal plate that contains numbers and letters. This plate is fixed onto the vehicle's body. It is used as a mean to identify the vehicle. The License Plate Recognition (LPR) system is a mean where a vehicle can be identified automatically using a computer system. The LPR has many applications, such as security applications for car tracking, or enforcing control on vehicles entering restricted areas (such as airports or governmental buildings). This paper is concerned with introducing a new method to recognize the Iraqi LPs using local vertical and horizontal projections, then testing its performance. The attained success rate reached 99.16%, with average recognition time around 0.012 second for re
... Show MoreIn many applications such as production, planning, the decision maker is important in optimizing an objective function that has fuzzy ratio two functions which can be handed using fuzzy fractional programming problem technique. A special class of optimization technique named fuzzy fractional programming problem is considered in this work when the coefficients of objective function are fuzzy. New ranking function is proposed and used to convert the data of the fuzzy fractional programming problem from fuzzy number to crisp number so that the shortcoming when treating the original fuzzy problem can be avoided. Here a novel ranking function approach of ordinary fuzzy numbers is adopted for ranking of triangular fuzzy numbers with simpler an
... Show MoreSpraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...
HTH Ali Tarik Abdulwahid , Ahmed Dheyaa Al-Obaidi , Mustafa Najah Al-Obaidi, eNeurologicalSci, 2023