In this paper, we discuss physical layer security techniques in downlink networks, including eavesdroppers. The main objective of using physical layer security is delivering a perfectly secure message from a transmitter to an intended receiver in the presence of passive or active eavesdroppers who are trying to wiretap the information or disturb the network stability. In downlink networks, based on the random feature of channels to terminals, opportunistic user scheduling can be exploited as an additional tool for enhancing physical layer security. We introduce user scheduling strategies and discuss the corresponding performances according to different levels of channel state information (CSI) at the base station (BS). We show that the avai
... Show MoreThe study includes collection of data about cholera disease from six health centers from nine locations with 2500km2 and a population of 750000individual. The average of infection for six centers during the 2000-2003 was recorded. There were 3007 cases of diarrhea diagnosed as cholera caused by Vibrio cholerae. The percentage of male infection was 14. 7% while for female were 13. 2%. The percentage of infection for children (less than one year) was 6.1%, it while for the age (1-5 years) was 6.9%and for the ages more than 5 years was 14.5%.The total percentage of the patients stayed in hospital was 7.7%(4.2%for male and 3.4%for female). The bacteria was isolated and identified from 7cases in the Central Laboratory for Health in Baghdad. In
... Show MoreSpeech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra
الخلفية: التهاب المفاصل الرَثَيَانِي أو الداء الرثياني أو الالتهاب المفصلي الروماتويدي هو مرض مزمن، من الأمراض الانضدادية التي تؤدي بالجهاز المناعي لمهاجمة المفاصل، مسببة التهابات وتدميرًا لها. ومن الممكن أيضًا أن يدمر جهاز المناعة أعضاء أخرى في الجسم مثل الرئتين والجلد. وفي بعض الحالات، يسبب المرض الإعاقة، مؤدية إلى فقدان القدرة على الحركة والإنتاجية. ويتم تشخيص المرض بواسطة تحاليل دم مخبرية مثل تحلي
... Show MoreGenerally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, co
... Show MoreVehicular Ad Hoc Networks (VANETs) are integral to Intelligent Transportation Systems (ITS), enabling real-time communication between vehicles and infrastructure to enhance traffic flow, road safety, and passenger experience. However, the open and dynamic nature of VANETs presents significant privacy and security challenges, including data eavesdropping, message manipulation, and unauthorized access. This study addresses these concerns by leveraging advancements in Fog Computing (FC), which offers lowlatency, distributed data processing near-end devices to enhance the resilience and security of VANET communications. The paper comprehensively analyzes the security frameworks for fog-enabled VANETs, introducing a novel taxonomy that c
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for