In this paper, an experimental study has been conducted regarding the indication of resonance in chaotic semiconductor laser. Resonant perturbations are effective for harnessing nonlinear oscillators for various applications such as inducing chaos and controlling chaos. Interesting results have been obtained regarding to the effect of the chaotic resonance by adding the frequency on the systems. The frequency changes nonlinear dynamical system through a critical value, there is a transition from a periodic attractor to a strange attractor. The amplitude has a very relevant impact on the system, resulting in an optimal resonance response for appropriate values related to correlation time. The chaotic system becomes regular under
... Show MoreThe research includes the study and calculation of the modulation function of Optical Semiconductor Fractal Modulator and spatial frequency for different values of Silicon modulator transmittance percentage(10%,35%,45%,58%),it found the relation between the modulation function of Silicon and spatial frequency, the exponential relation of all values of the transmittance , the best state of modulation function when the value of transmittance is T=58% ,also the research includes the study of the relation of transmittance with different values of refractive index of Silicon . So the research involves building a computer program of output data which would relate to fractal optical modulation made of semiconductor mate
... Show MoreHetero junctions are fabricated by depositing antimony (Sb) and Al films on n-type single crystal(c-Si) wafers by the method of vacuum evaporation with thickness (0.25µm), with rate of deposition equals to 2.77 Å/sec, all samples are annealed in a vacuum for one hour at 473K. The tests have shown that all the films have polycrystalline structure for all Sb films. The barrier heights in (Sb/c-Si) junction was found to be equal 0.825eV, but(Al/c-Si) junction ohmic contact. Current-voltage measurements confirm this behaviour.
The analysis, behavior of two-phase flow incompressible fluid in T-juction is done by using "A Computational Fluid Dynamic (CFD) model" that application division of different in industries. The level set method was based in “Finite Element method”. In our search the behavior of two phase flow (oil and water) was studed. The two-phase flow is taken to simulate by using comsol software 4.3. The multivariable was studying such as velocity distribution, share rate, pressure and the fraction of volume at various times. The velocity was employed at the inlet (0.2633, 0.1316, 0.0547 and 0.0283 m/s) for water and (0.1316 m/s) for oil, over and above the pressure set at outlet as a boundary condition. It was observed through the program
... Show Moreالخلاصة:
ة k تعتبر عملیة تشفیر البیانات الصوتیة من التكنولوجیا المألوفة لخزن ونقل الاشارات الصوتیة. العلامة المائی
ات k اق المعلوم k مح بالح k ذا تس k وتیة وھك k ارات الص k طة الاش k ة بواس k ات المنقول k تعطي القوة في عدم التحسس بوجود البیان
القیمة بالمحتوى مثل اسم المؤلف او الفنان او حقوق الطباعة المتعلقة بالبیانات.
ة k وع موج k ن ن k وتي م k ف ص k ي مل k ص ف k وع ن k ن ن k ة م k ة المائی k اء العلام k نة لاخف k ة محس k ث خوارز
Thin films of (CuO)x(ZnO)1-x composite were prepared by pulsed laser deposition technique and x ratio of 0≤ x ≤ 0.8 on clean corning glass substrate at room temperatures (RT) and annealed at 373 and 473K. The X-ray diffraction (XRD) analysis indicated that all prepared films have polycrystalline nature and the phase change from ZnO hexagonal wurtzite to CuO monoclinic structure with increasing x ratio. The deposited films were optically characterized by UV-VIS spectroscopy. The optical measurements showed that (CuO)x(ZnO)1-x films have direct energy gap. The energy band gaps of prepared thin films
Polymethylmethacrylate film (PMMA) of thickness 75 μm was evaluated Spectrophotometrically for using it as a low-doses gamma radiation dosimeter. The doses were examined in the range 0.1 mrad-10 krad. Within an absorption band of 200-400 nm, the irradiated films showed an increase in the absorption intensity with increasing the absorbed doses. Calibration curves for the changes in the absorption differences were obtained at 218, 301, and 343 nm. At 218 nm the response for the absorbed doses is a linear in the range 10 mrad- 10 krad. Hence it is recommended to be adopted as an environmental low doses dosimeter
In this paper, we studied the travelling wave solving for some models of Burger's equations. We used sine-cosine method to solution nonlinear equation and we used direct solution after getting travelling wave equation.