Pilot-scale dead end microfiltration membranes were carried out to determine the feasibility of the process for treating the oily wastewater which discharge from some Iraqi factories such as power station of south of Baghdad and the general company of petrochemical industries. Polypropylene membranes (cylindrical shape) with different pore diameters (1 and 5 micron) were used to conduct the study on micromembrane process. The variables studied are oil concentration (100 – 1000 ppm), feed flow rate (20 – 40 l/h), operating temperature (31 – 50°C) and time (0 – 3 h). It was found that the flux increases with increasing feed flow rate, temperature and pore size of membrane, and decreases with increasing oil concentration and operating time. It was found also that the effect of feed oil concentration has the greatest effect on the fouling of membrane among other variables. The percent rejection of oil improved significantly with decreasing oil concentration but decreased with increasing feed temperature, pore size of membrane and operating time. Feed flow rate has slightly effect on oil rejection. The type of oil used in this work is 20W-50 gasoline and diesel engine oil. A general model of dead end filtration mode has been successfully evaluated to explain fundamental mechanisms involved in flux decline during dead end microfiltration of oily water emulsions. Analysis of the fall in flux with time for the polypropylene membrane (5 µm) indicates that intermediate and standard pore models give the best prediction for experimental behavior. Empirical correlations for the prediction of the flux and percent reject of oil were determined in this study. These equations have the correlation coefficient 98.87% and 91.49% respectively.
In this study, the feasibility of Forward–Reverse osmosis processes was investigated for treating the oily wastewater. The first stage was applied forward osmosis process to recover pure water from oily wastewater. Sodium chloride (NaCl) and magnesium chloride (MgCl2) salts were used as draw solutions and the membrane that was used in forward osmosis (FO) process was cellulose triacetate (CTA) membrane. The operating parameters studied were: draw solution concentrations (0.25 – 0.75 M), oil concentration in feed solution (FS) (100-1000 ppm), the temperature of FS and draw solution (DS) (30 - 45 °C), pH of FS (4-10) and the flow rate of both DS and FS (20 - 60 l/h). It was found that the water flux and oil concentration in FS increas
... Show MoreIn this study an experimental work was done to study the possibility of using aluminum rubbish material as a coagulant to remove the colloidal particles from oily wastewater by dissolving this rubbish in sodium hydroxide solution. The experiments were carried out on simulated oily wastewater that was prepared at different oil concentrations and hardness levels (50, 250, 500, and 1000) ppm oil for (2000, 2500, 3000, and 3500) ppm CaCo3 respectively. The initial turbidity values were (203, 290, 770, and 1306) NTU, while the minimum values of turbidity that have been gained from the experiments in NTU units were (1.67, 1.95, 2.10, and 4.01) at best sodium aluminate dosages in milliliters (12, 20, 24, and 28) for
... Show MoreThe present work aims to study the treatment of oily wastewater by means of forward osmosis membrane bioreactor process. Side stream (external) configuration and submerged (internal) configuration of osmotic membrane bioreactor were performed and investigated. The experimental work for each configuration was carried out continuously over 21 days. The flux behavior of forward osmosis membrane in an osmotic membrane bioreactor (OMBR) was investigated, using NaCl as the draw solution and CTA as FO membrane. The effect of mixed liquor suspended solids (MLSS) concentration and TDS accumulation of bioreactor on water flux and membrane fouling behaviors was detected. The accumulation and rejection of nutrients in the bioreactor (Nitrate, COD,
... Show MoreA study in the treatment and reuse of oily wastewater generated from the process of fuel oil treatment of gas turbine power plant was performed. The feasibility of using hollow fiber ultrafiltration (UF) membrane and nanofiltration (NF) membrane type polyamide thin-film composite in a pilot plant was investigated. Three different variables: pressure (0.5, 1, 1.5 and 2 bars), oil content (10, 20, 30 and 40 ppm), and temperature (15, 20, 30 and 40 ᵒC) were employed in the UF process while TDS was kept constant at 150 ppm. Four different variables: pressure (2, 3, 4 and 5 bar), oil content (2.5, 5, 7.5 and 10 ppm), total dissolved solids (TDS) (100, 200,300 and 400 ppm), and temperature (15, 20, 30 and 40 ᵒC) were manipulated with the h
... Show MoreTwo types of adsorbents were used to treat oily wastewater, activated carbon and zeolite. The removal efficiencies of these materials were compared to each other. The results showed that activated carbon performed some better properties in removal of oil. The experimental methods which were employed in this investigation included batch and column studies. The former was used to evaluate the rate and equilibrium of carbon and zeolie adsorption, while the latter was used to determine treatment efficiencies and performance characteristics. Expanded bed adsorber was constructed in the column studies. In this study, the adsorption behavior of vegetable oil (corn oil) onto activated carbon and zeolite was examined as a function of the concentr
... Show MoreThe present work provides to treat real oily saline wastewater released from drilling oil sites by the use of electrocoagulation technique. Aluminum tubes were utilized as electrodes in a concentric manner to minimize the concentrations of 113400 mg TDS/L, 65623 mg TSS/L, and the ions of 477 mg HCO3/L, 102000 mg Cl/L and 5600 mg Ca/L presented in real oily wastewater under the effect of the operational parameters (the applied current and reaction time) by making use of the central composite rotatable design. The final concentrations of TDS, TSS, HCO3, Cl, and Ca that obtained were 93555 ppm (17.50%), 11011 ppm (83.22%), 189ppm (60.38%), 80000ppm (22%), and 4200 ppm (25%), respectively, under the optimum values of the operational parameters
... Show MoreThis paper was aimed to study the efficiency of forward osmosis (FO) process as a new application for the treatment of wastewater from textile effluent and the factors affecting the performance of forward osmosis process.
The draw solutions used were magnesium chloride (MgCl2), and aluminum sulphate (Al2 ( SO4)3 .18 H2O), and the feed solutions used were reactive red, and disperse blue dyes.
Experimental work were includes operating the forward osmosis process using thin film composite (TFC) membrane as flat sheet for different draw solutions and feed solutions. The operating parameters studied were : draw solutions concentration (10 – 90 g/l), feed solutions concentration (5 – 30 mg/l), draw solutions flow rate (10 – 50 l/hr
In this study, ultraviolet (UV), ozone techniques with hydrogen peroxide oxidant were used to treat the wastewater which is produced from South Baghdad Power Station using lab-scale system. From UV-H2O2 experiments, it was shown that the optimum exposure time was 80 min. At this time, the highest removal percentages of oil, COD, and TOC were 84.69 %, 56.33 % and 50 % respectively. Effect of pH on the contaminants removing was studied in the range of (2-12). The best oil, COD, and TOC removal percentages (69.38 %, 70 % and 52 %) using H2O2/UV were at pH=12. H2O2/ozone experiments exhibited better performance compared to
... Show MoreIt is well known that petroleum refineries are considered the largest generator of oily sludge which may cause serious threats to the environment if disposed of without treatment. Throughout the present research, it can be said that a hybrid process including ultrasonic treatment coupled with froth floatation has been shown as a green efficient treatment of oily sludge waste from the bottom of crude oil tanks in Al-Daura refinery and able to get high yield of base oil recovery which is 65% at the optimum operating conditions (treatment time = 30 min, ultrasonic wave amplitude = 60 micron, and (solvent: oily sludge) ratio = 4). Experimental results showed that 83% of the solvent used was recovered meanwhile the main water
... Show More