Upper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that using mean absolute value (MAV), waveform length (WL), Wilson Amplitude (WAMP), Sine Slope Changes (SSC), and Cardinality features of the proposed algorithm achieves a classification accuracy of 89.6% when classifying seven distinct types of hand and wrist movement. Index Terms— Human Robot Interaction, Bio-signals Analysis, LDA classifier.
Digital Elevation Model (DEM) is one of the developed techniques for relief representation. The definition of a DEM construction is the modeling technique of earth surface from existing data. DEM plays a role as one of the fundamental information requirement that has been generally utilized in GIS data structures. The main aim of this research is to present a methodology for assessing DEMs generation methods. The DEMs data will be extracted from open source data e.g. Google Earth. The tested data will be compared with data produced from formal institutions such as General Directorate of Surveying. The study area has been chosen in south of Iraq (Al-Gharraf / Dhi Qar governorate. The methods of DEMs creation are kri
... Show MoreHealthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show MoreThis study aims to identify the impact of using the infrastructure of the Information Technology (IT) on the performance of human resources in the public universities. This process is done by doing research in the size, quality, and efficiency of the performance, also speed of achievement and simplification of procedures. Diyala University was chosen for the diagnosis through the opinions and attitudes of its employees. Consequently, suggestions that contribute to improve the performance of the employees and thus its overall performance are obtained. Another objective of this study is identifying the human resources which are currently used in academic institutions and educational services systems because the significant role of th
... Show MoreSemiconductor quantum dots (QDs) have attracted tremendous attentions for their unique characteristics for solid-state lighting and thin-film display applications. A simple chemical method was used to synthesis quantum dots (QDs) of zinc sulfide (ZnS) with low cost. The XRD) shows cubic phase of the prepared ZnS with an average particles size of (3-29) nm. In UV-Vis. spectra observed a large blue shift over 38 nm. The band gaps energy (Eg) was 3.8 eV and 3.37eV from the absorption and photoluminescence (PL) respectively which larger than the Eg for bulk. QDs-LED hybrid devices were fabricated using ITO/ PEDOT: PSS/ Poly-TPD/ ZnS-QDs/ with different electron transport layers and cathode of LiF/Al layers. The EL spectrum reveals a bro
... Show MoreType 2 diabetes mellitus which abbreviate as T2DM is a complex endocrine and metabolic disorder arisingfrom genetic and environmental factors interaction which in turn induce various degrees of insulin functionalalteration on peripheral tissues. Globally, T2DM has develop into a public health problem. Therefore, Thestudy included (75) patients(37 female and 38 males) suffering from T2DM who visit al-kadhimiya teachinghospital with age range 20-80 years and (70) as healthy controls with age range 20-70 years. All studiedgroups were evaluated CMV IgG by ELISA,B. urea, S. Creatinine, cholesterol and triglyceride the resultsshowed that B.urea, S.creatinine and serum cholesterol showed a non-significant differences between studiedgroup,
... Show MoreCryptography algorithms play a critical role in information technology against various attacks witnessed in the digital era. Many studies and algorithms are done to achieve security issues for information systems. The high complexity of computational operations characterizes the traditional cryptography algorithms. On the other hand, lightweight algorithms are the way to solve most of the security issues that encounter applying traditional cryptography in constrained devices. However, a symmetric cipher is widely applied for ensuring the security of data communication in constraint devices. In this study, we proposed a hybrid algorithm based on two cryptography algorithms PRESENT and Salsa20. Also, a 2D logistic map of a chaotic system is a
... Show More