Ultimate oil recovery and displacement efficiency at the pore-scale are controlled by the rock wettability thus there is a growing interest in the wetting behaviour of reservoir rocks as production from fractured oil-wet or mixed-wet limestone formations have remained a key challenge. Conventional waterflooding methods are inefficient in such formation due to poor spontaneous imbibition of water into the oil-wet rock capillaries. However, altering the wettability to water-wet could yield recovery of significant amounts of additional oil thus this study investigates the influence of nanoparticles on wettability alteration. The efficiency of various formulated zirconium-oxide (ZrO2) based nanofluids at different nanoparticle concentrations (0-0.05 wt. %) was assessed through contact angle measurements. Results from the experiments showed ZrO2 nanofluid have great potentials in changing oil-wet limestone towards strongly water-wet condition. The best performance was observed at 0.05wt% ZrO2 nanoparticle concentration which changed an originally strongly oil-wet (152°) calcite substrate towards a strongly water-wet (44°) state thus we conclude that ZrO2 is a good agent for enhanced oil recovery.
A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreAn analytical approach based on field data was used to determine the strength capacity of large diameter bored type piles. Also the deformations and settlements were evaluated for both vertical and lateral loadings. The analytical predictions are compared to field data obtained from a proto-type test pile used at Tharthar –Tigris canal Bridge. They were found to be with acceptable agreement of 12% deviation.
Following ASTM standards D1143M-07e1,2010, a test schedule of five loading cycles were proposed for vertical loads and series of cyclic loads to simulate horizontal loading .The load test results and analytical data of 1.95
... Show MoreA two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was
... Show MoreA demonstration of the inverse kinematics is a very complex problem for redundant robot manipulator. This paper presents the solution of inverse kinematics for one of redundant robots manipulator (three link robot) by combing of two intelligent algorithms GA (Genetic Algorithm) and NN (Neural Network). The inputs are position and orientation of three link robot. These inputs are entering to Back Propagation Neural Network (BPNN). The weights of BPNN are optimized using continuous GA. The (Mean Square Error) MSE is also computed between the estimated and desired outputs of joint angles. In this paper, the fitness function in GA is proposed. The sinwave and circular for three link robot end effecter and desired trajectories are simulated b
... Show MoreNonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though
... Show MoreThis study proposed control system that has been presented to control the electron lens resistance in order to obtain a stabilized electron lens power. This study will layout the fundamental challenges, hypothetical plan arrangements and development condition for the Integrable Optics Test Accelerator (IOTA) in progress at Fermilab. Thus, an effective automatic gain control (AGC) unit has been introduced which prevents fluctuations in the internal resistance of the electronic lens caused by environmental influences to affect the system's current and power values and keep them in stable amounts. Utilizing this unit has obtained level balanced out system un impacted with electronic lens surrounding natural varieties.
Longitudinal data is becoming increasingly common, especially in the medical and economic fields, and various methods have been analyzed and developed to analyze this type of data.
In this research, the focus was on compiling and analyzing this data, as cluster analysis plays an important role in identifying and grouping co-expressed subfiles over time and employing them on the nonparametric smoothing cubic B-spline model, which is characterized by providing continuous first and second derivatives, resulting in a smoother curve with fewer abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and fluctuations in the data.
The longitudinal balanced data profile was compiled into subgroup
... Show More