Preferred Language
Articles
/
loYy1YYBIXToZYAL8LXd
Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles-fins combination
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Sat May 01 2021
Journal Name
Proceedings Of The Thermal And Fluids Engineering Summer Conference
HEAT TRANSFER ENHANCEMENT IN PCM THERMAL ENERGY STORAGE VIA THE TRIPLEX TUBE HEAT EXCHANGER
...Show More Authors

Crossref (1)
Crossref
Publication Date
Sat Sep 01 2018
Journal Name
International Journal Of Heat And Mass Transfer
Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger
...Show More Authors

View Publication
Scopus (228)
Crossref (226)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Conversion And Management
Simultaneous energy storage and recovery in the triplex-tube heat exchanger with PCM, copper fins and Al2O3 nanoparticles
...Show More Authors

View Publication
Scopus (215)
Crossref (209)
Scopus Clarivate Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Journal Of Engineering
Numerical Study for the Tube Rotation Effect on Melting Process in Shell and Tube Latent Heat Energy Storage LHES System
...Show More Authors

Although renewable energy systems have become an interesting global issue, it is not continuous either daily or seasonally. Latent heat energy storage (LHES) is one of the suitable solutions for this problem. LHES becomes a basic element in renewable energy systems. LHES compensate for the energy lack when these systems are at low production conditions. The present work considered a shell and tube LHES for numerical investigation of the tube rotation influence on the melting process. The simulation and calculations were carried out using ANSYS Fluent software. Paraffin wax represents the phase change material (PCM) in this work, while water was selected to be the heat transfer fluid (HTF). The calculations were carried o

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Using Nanoparticles for Enhance Thermal Conductivity of Latent Heat Thermal Energy Storage
...Show More Authors

Phase change materials (PCMs) such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES) has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.%) of (TiO2) nano-particles with about (10nm) diameter. It is found that the phase change temperature varies with adding (TiO2) nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity ha

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Energy Conversion And Management
Improved PCM melting in a thermal energy storage system of double-pipe helical-coil tube
...Show More Authors

View Publication
Scopus (116)
Crossref (109)
Scopus Clarivate Crossref
Publication Date
Sat Oct 09 2021
Journal Name
Nanomaterials
Investigation of Heat Transfer Enhancement in a Triple Tube Latent Heat Storage System Using Circular Fins with Inline and Staggered Arrangements
...Show More Authors

Inherent fluctuations in the availability of energy from renewables, particularly solar, remain a substantial impediment to their widespread deployment worldwide. Employing phase-change materials (PCMs) as media, saving energy for later consumption, offers a promising solution for overcoming the problem. However, the heat conductivities of most PCMs are limited, which severely limits the energy storage potential of these materials. This study suggests employing circular fins with staggered distribution to achieve improved thermal response rates of PCM in a vertical triple-tube heat exchanger involving two opposite flow streams of the heat-transfer fluid (HTF). Since heat diffusion is not the same at various portions of the PCM unit,

... Show More
View Publication Preview PDF
Scopus (38)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Wed Jun 28 2023
Journal Name
Engineering Applications Of Computational Fluid Mechanics
Comprehensive analysis of melting enhancement by circular Y-shaped fins in a vertical shell-and-tube heat storage system
...Show More Authors

View Publication
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Dec 13 2022
Journal Name
Frontiers In Chemistry
Numerical analysis of the energy-storage performance of a PCM-based triplex-tube containment system equipped with arc-shaped fins
...Show More Authors

This study numerically intends to evaluate the effects of arc-shaped fins on the melting capability of a triplex-tube confinement system filled with phase-change materials (PCMs). In contrast to situations with no fins, where PCM exhibits relatively poor heat response, in this study, the thermal performance is modified using novel arc-shaped fins with various circular angles and orientations compared with traditional rectangular fins. Several inline and staggered layouts are also assessed to maximize the fin’s efficacy. The effect of the nearby natural convection is further investigated by adding a fin to the bottom of the heat-storage domain. Additionally, the Reynolds number and temperature of the heat-transfer fluid (HTF) are e

... Show More
Scopus (13)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Fri Mar 05 2021
Journal Name
Materials
Optimum Placement of Heating Tubes in a Multi-Tube Latent Heat Thermal Energy Storage
...Show More Authors

Utilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes re

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (11)
Scopus Clarivate Crossref