Introduction: Salivary melatonin is a critical antioxidant that contributes to oral health by mitigating oxidative stress. Psychological stress linked to thumb sucking may disrupt oral homeostasis, leading to conditions such as dental caries and fungal infections. Aim: This study explores the relationships between thumb sucking, salivary melatonin levels, dental caries, and the presence of Candida albicans (CA) in children. Materials and methods: A case-control study was conducted with 60 children aged 4-5 years at the University of Baghdad’s College of Dentistry. Participants were divided into thumb-sucking (n=30) and non-thumb-sucking (n=30) groups. Salivary melatonin levels were measured using enzyme-linked immunosorbent assays (ELISA), dental caries were assessed via the dmfs index, and CA counts were quantified on Sabouraud dextrose agar (SDA). Statistical analyses were performed, including t-tests, ANOVA, and correlation assessments. Results: Thumb-sucking children exhibited significantly lower salivary melatonin levels (28.620±2.278 pg/mL) compared to controls (34.525±2.142 pg/mL; p=0.044). The thumb-sucking group also had higher dmfs scores (15.033±1.449 vs. 8.667±0.899; p=0.000) and greater CA counts (18.900±1.048 vs. 13.583±0.549; p=0.000). Negative correlations were observed between salivary melatonin levels and the severity of dental caries, while positive correlations linked CA with dental caries. Conclusions: Thumb sucking adversely affects pediatric oral health by reducing salivary melatonin, increasing dental caries risk, and promoting fungal overgrowth. Early intervention to curb thumb-sucking behaviors may mitigate these risks and improve oral health outcomes.
Cadmium sulfide and Aluminum doped CdS thin films were prepared by thermal evaporation technique in vacuum on a heated glass substrates at 373K. A comparison between the optical properties of the pure and doped films was made through measuring and analyzing the transmittance curves, and the effect of the annealing temperature on these properties were estimated. All the films were found to exhibit high transmittance in the visible/ near infrared region from 500nm to 1100nm.The optical band gap energy was found to be in the range 2.68-2.60 eV and 2.65-2.44 eV for CdS and CdS:Al respectively , with changing the annealing temperature from room temperature to 423K.Optical constants such as refractive index, extinction coefficient, and complex di
... Show MoreThin films of Nb2O5 have been successfully deposited using the DC reactive magnetron sputtering technique to manufacture NH3 gas sensors. These films have been annealed at a high temperature of 800°C for one hour. The assessment of the Nb2O5 thin films structural, morphological, and electrical characteristics was carried out using several methods such as X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity assessments. The XRD analysis confirms the polycrystalline composition of the Nb2O5 thin films with a hexagonal crystal structure. Furthermore, the sensitivity, response time, and recovery time of the gas sensor were evaluated for the Nb2O5 thin film
... Show MoreThe electrospun nanofibers membranes (ENMs) have gained great attention due to their superior performance. However, the low mechanical strength of ENMs, such as the rigidity and low strength, limits their applications in many aspects which need adequate strength, such as water filtration. This work investigates the impact of electrospinning parameters on the properties of ENMs fabricated from polyacrylonitrile (PAN) solved in N, N-Dimethylformamide (DMF). The studied electrospinning parameters were polymer concentration, solution flow rate, collector rotating speed, and the distance between the needle and collector. The fabricated ENMs were characterized using scanning electron microscopy (SEM) to understand the surface morphology and es
... Show MoreA numerical investigation has been performed to examine the effect of fluorine concentration on the chain reaction mechanisms and parameters of hydrogen fluoride (HF) chemical laser. The practical difficulties associated with this type of lasers impose that an alternative route might be quite useful. Thus, particular attention was paid to develop a computer program to investigate various processes. The results of this computer simulation program proved their credibility when compared with the little published data. This computer program is called Reaction Rate Simulation Model (RRSM). An entirely new approach to emulate the reaction mechanisms has been followed. The effectiveness of reaction rates in the processes of HF lase
... Show MoreThe excellent specifications of electrodes coated with lead dioxide material make it of great importance in the industry. So it was suggested this study, which includes electrodeposition of lead dioxide on graphite substrate, knowing that the electrodeposition of lead dioxide on graphite studied earlier in different ways.
In this work the deposition process for lead dioxide conducted using electrolytic solution containing lead nitrate concentration 0.72 M with the addition of some other material to the solution, such as copper nitrate, nickel nitrate, sodium fluoride and cetyl trimethyl ammonium bromide, but only in very small concentrations. As for the operating conditions, the effect of change potential and temperature as well
... Show MoreObjectives: The purpose of this in vitro study was to compare the effect of adding a poloxamer surfactant to the irrigant solutions on its cleaning efficiency. Design: In this study the roots of extracted permanent premolar teeth were used and evaluated by using Scanning Electronic Microscopy (SEM). Materials and Method: 72 human single tooth of permanent premolar (8 for each group) were used in this in vitro study. Roots after sectioning at cervical area to get 15 mm were embedded in a plastic container filled with impression silicon, then instrumented with ProTaper rotary instruments till size F4. Each group (8 root) were irrigated with one of the nine solutions used in study: three concentrations of NaOH [5% (A1), 2.5%(A2), 0.5%(A3)], th
... Show MoreElectrochemical Machining is a term given to one of nontraditional machining that uses a chemical reaction associated with electric current to remove the material. The process is depending on the principle of anodic dissolution theory for evaluating material removal during electrochemical process. In this study, the electrochemical machining was used to remove 1 mm from the length of the a workpiece (stainless steel 316 H) by immersing it in to electrolyte (10, 20 and 30 g) of NaCl and Na2SO4 to every (1 litter of filtered water). The tool used was made from copper. Gap size between the workpiece and electrode is (0.5) mm. This study focuses on the effect of the changing the type and concentration of electroly
... Show More