Many patients with advanced type 2 diabetes mellitus (T2DM) and all patients with T1DM require insulin to keep blood glucose levels in the target range. The most common route of insulin administration is subcutaneous insulin injections. There are many ways to deliver insulin subcutaneously, such as vials and syringes, insulin pens, and insulin pumps. Though subcutaneous insulin delivery is the standard route of insulin administration, it is associated with injection pain, needle phobia, lipodystrophy, noncompliance, and peripheral hyperinsulinemia. Therefore, the need exists to deliver insulin in a minimally invasive or noninvasive way and in the most physiological way. Inhaled insulin was the first approved noninvasive and alternative way to deliver glucose, but it has been withdrawn from the market. Researchers are exploring technologies to enable noninvasive insulin delivery. Some of the routes for insulin administration that are under investigation are oral, buccal, nasal, peritoneal, and transdermal. This article has focused on different possible routes of insulin administration, their advantages and limitations, and the possible scope of the new drug development.
This study aims to model the flank wear prediction equation in metal cutting, depending on the workpiece material properties and almost cutting conditions. A new method of energy transferred solution between the cutting tool and workpiece was introduced through the flow stress of chip formation by using the Johnson-Cook model. To investigate this model, an orthogonal cutting test coupled with finite element analysis was carried out to solve this model and finding a wear coefficient of cutting 6061-T6 aluminum and the given carbide tool.
ABSTRACT The antibacterial and antbiofilm activities of water extract of Calendula officinalis flowers against some of enteropathogenic bacteria was studied, also phytochemical screening and determination of antioxidant activity of the extract has been investigated. The results showed that the water extract of C. officinalis exhibited a good antibacterial activity against all pathogenic bacterial isolates (Salmonella, Shigella dysenteriae, Shigella flexneri, Shigella sonnei and E. coli) especially at concentration 100 µg/ml in contrast with the control cefotan antibiotic. S. sonnei was more sensitive to extract than other bacteria with highest inhibition zone (23 mm). The preliminary phytochemical tests results indicated the presence
... Show MoreLipase enzyme has attracted a lot of attention in recent years because of its diverse biotechnological applications. The present study was conducted to screen germinated seeds of four crops, namely sunflower (Helianthus annuus), flaxor linseed (Linum usitatissimum ), peanut (Arachis hypogaea ) and castor bean (Ricinus communis), for the activity of their lipases. to the study also included the extraction and purification of lipase from the seeds of the most promising crop using different solvents. The results indicated that the maximum enzymatic activity (0.669 U/ml) was obtained when 0.1 M Tris-HCl buffer extract was used after 3 days of seed germination of all the tested species, as compared to the other test solvents
... Show MoreWe have investigated the impact of laser pulse wavelength on the quantity of ablated materials. Specifically, this study investigated the structural, optical, and morphological characteristics of tungsten trioxide (WO3) nanoparticles (NPs) that were synthesized using the technique of pulsed-laser ablation of a tungsten plate. A DD drop of water was used as the ablation environment at a fixed fluence at 76.43 J/cm2 and pulse number was 400 pulses of the laser. The first and second harmonic generation ablations were carried out, corresponding to wavelengths of 1064 and 532 nm, respectively. The Q-switched Nd: YAG laser operates at a repetition rate of 1 Hz and has a pulse width of roughly 15 ns. These parameters are applicable to both wavelen
... Show MoreABSTRACT: Polypyrrole and polypyrrole / silver nanocomposites were fabricated by in-situ polymerization employing Ammonium Persulphate as an oxidizing agent. Nanocomposites were synthesized by combining polypyrrole and silver nanoparticles in various weight percentages (0.1%, 0.5%, 3%, 5% and 7% wt.). Crystallographic data were collected using X-ray diffraction. PPy particles were found to have an orthorhombic symmetry. In contrast, PPy/Ag nanocomposites were reported to have monoclinic structure. The crystallite size was determined by XRD using Scherrer equation and considered to be within 49 nm range. DC conductivity of pelletized samples was evaluated in the temperature range of 323.15k to 453.15k. The conductiv
... Show MoreA high settlement may take place in shallow footing when resting on liquefiable soil if subjected to earthquake loading. In this study, a series of shaking table tests were carried out for shallow footing resting on sand soil. The input motion is three earthquake loadings (0.05g, 0.1g, and 0.2g). The study includes a reviewing of theoretical equations (available in literatures), which estimating settlement of footings due to earthquake loading, calibration, and verification of these equations with data from the shaking table test for improved soil by grouting and unimproved soil. It is worthy to note that the grouting materials considered in this study are the Bentonite and CKD slurries. A modification to the seismic set
... Show MoreThree Schiff bases from Benzaldehyde and Salicylaldehyde have been synthesized (A, 1and 2) and two of them (1and 2) have been tested for anti-inflammatory activity. The p-aminobenzene sulfonamide has been synthesized from acetanilide through the addition of excess chlorosulfonic acid then concentrated ammonia solution; Schiff base of this derivative (2) exhibited good level of activity against egg-white induced edema in rat hind paw, while the other tested derivative exhibited no activity.
Key words: Schiff bases, sulfonamide derivatives, salicylaldehyde
The precipitation of calcite induced via microorganisms (MICP) is a technique that has been developed as an innovative sustainable ground improvement method utilizing ureolytic bacteria to soil strengthening and stabilization. Locally isolated Bacillus Sonorensis from Iraqi soil samples were found to have high abilities in producing urease. This study aims to use the MICP technique in improving the undrained shear strength of soft clay soil using two native urease producing bacteria that help in the precipitation of calcite to increase the cementation between soil particles. Three concentrations of each of the locally prepared Bacillus sonorensis are used in this study for cementation reagent (0.25M, 0.5M, and 1M) during
... Show More