Green synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, operational parameters including adsorbent weight, adsorption duration, temperature, pH value, and initial BS dye concentration were optimized for the adsorption process. Isotherm analysis indicated a better fit of the Langmuir model with equilibrium experimental data than the Freundlich model. The kinetic study revealed that the Pseudo-second-order (PSO) model was more suitable to represent the adsorption process compared to the Pseudo-first-order (PFO) kinetic model. Thermodynamic analysis encompassing the changes in Gibbs free energy (∆G˚), enthalpy (∆H˚), and entropy (∆S˚) unveiled that the adsorption of BS dye onto NiO-NPs was a spontaneous endothermic process with an increase in the randomness.
In this work; copper oxide films (CuO) were fabricated by PLD. The films were analyzed by UV-VIS absorption spectra and their thickness by using profilometer. Pulsed Nd:YAG laser was used for prepared CuO thin films under O2 gas environment with varying both pulse energy and annealing temperature. The optical properties of as-grown film such as optical transmittance spectrum, refractive index and energy gap has been measured experimentally and the effects of laser pulse energy and annealing temperature on it were studied. An inverse relationship between energy gap and both annealing temperature and pulse energy was observed.
Owing to their cost-effectiveness and the natural abundance of magnesium, magnesium-ion batteries (MIBs) were introduced as encouraging alternatives to Lithium-ion batteries. Following the successful synthesis of carbon nano-tube, its B and N doped derivatives which were doped with B and N enjoyed the attention of researchers as novel anode materials (AM) for MIBs. Here, we investigated a BC2N nano-tube (BC2NNT) as an encouraging AM for MIBs. To have a deeper understanding of the electrochemical properties, cycling stability, specific capacity (SC) and the adsorption behavior of this nano-tube, first-principles density functional theory computations were performed. By performing NMR calculations, we identified two types of non-aromatic hexa
... Show MoreThe world is moving towards greening business in general and production systems in particular. At the same time, economic units seek to enhance their productivity and find any variables that can contribute to improving their elements. Economic units should not ignore the green dimension of cost management techniques because of its role in containing the green dimension of the production system and the product. However the few researches dealt with the subject of the green kaizen showed its role in reducing costs and improving the environment. Those researches did not address its contribution to raising the level of productivity. Productivity is an important indicator of economic units that expresses their level of success and progre
... Show MoreIn this work, the fractional damped Burger's equation (FDBE) formula = 0,
This study focused on the improvement of the quality of gasoline and enhancing its octane number by the reduction of n-paraffins using zeolite 5A. This study was made using batch and continuous mode. The parameters which affected the n-paraffin removal efficiency for each mode were studied. Temperature (30 and 40 ˚C) and mixing time up to 120 min for different amounts of zeolite ranging (10-60 g) were investigated in a batch mode. A maximum removal efficiency of 64% was obtained using 60 g of zeolite at 30 ˚C after a mixing time 120 min. The effect of feed flow rate (0.3-0.8 l/hr) and bed height (10-20 cm) were also studied in a continuous mode. The equilibrium isotherm study was made using different amounts of zeolite (2-20 g) and the
... Show MoreA nonlinear filter for smoothing color and gray images
corrupted by Gaussian noise is presented in this paper. The proposed
filter designed to reduce the noise in the R,G, and B bands of the
color images and preserving the edges. This filter applied in order to
prepare images for further processing such as edge detection and
image segmentation.
The results of computer simulations show that the proposed
filter gave satisfactory results when compared with the results of
conventional filters such as Gaussian low pass filter and median filter
by using Cross Correlation Coefficient (ccc) criteria.
The research discussed the possibility of adsorption of Brilliant Blue Dye (BBD) from wastewater using 13X zeolite adsorbent, which is considered a byproduct of the production process of potassium carbonate from Iraqi potash raw materials. The 13X zeolite adsorbent was prepared and characterized by X-ray diffraction that showed a clear match with the standard 13X zeolite. The crystallinity rate was 82.15% and the crystal zeolite size was 5.29 nm. The surface area and pore volume of the obtained 13X zeolite were estimated. The prepared 13X zeolite showed the ability to remove BBD contaminant from wastewater at concentrations 5 to 50 ppm and the removal reached 96.60% at the lower pollutant concentration. Adsorption measurements versus tim
... Show More