Green synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, operational parameters including adsorbent weight, adsorption duration, temperature, pH value, and initial BS dye concentration were optimized for the adsorption process. Isotherm analysis indicated a better fit of the Langmuir model with equilibrium experimental data than the Freundlich model. The kinetic study revealed that the Pseudo-second-order (PSO) model was more suitable to represent the adsorption process compared to the Pseudo-first-order (PFO) kinetic model. Thermodynamic analysis encompassing the changes in Gibbs free energy (∆G˚), enthalpy (∆H˚), and entropy (∆S˚) unveiled that the adsorption of BS dye onto NiO-NPs was a spontaneous endothermic process with an increase in the randomness.
An efficient combination of Adomian Decomposition iterative technique coupled Elzaki transformation (ETADM) for solving Telegraph equation and Riccati non-linear differential equation (RNDE) is introduced in a novel way to get an accurate analytical solution. An elegant combination of the Elzaki transform, the series expansion method, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has
... Show MoreIn modern era, which requires the use of networks in the transmission of data across distances, the transport or storage of such data is required to be safe. The protection methods are developed to ensure data security. New schemes are proposed that merge crypto graphical principles with other systems to enhance information security. Chaos maps are one of interesting systems which are merged with cryptography for better encryption performance. Biometrics is considered an effective element in many access security systems. In this paper, two systems which are fingerprint biometrics and chaos logistic map are combined in the encryption of a text message to produce strong cipher that can withstand many types of attacks. The histogram analysis o
... Show MoreIn present work examined the oxidation desulfurization in batch system for model fuels with 2250 ppm sulfur content using air as the oxidant and ZnO/AC composite prepared by thermal co-precipitation method. Different factors were studied such as composite loading 1, 1.5 and 2.5 g, temperature 25 oC, 30 oC and 40 oC and reaction time 30, 45 and 60 minutes. The optimum condition is obtained by using Tauguchi experiential design for oxidation desulfurization of model fuel. the highest percent sulfur removal is about 33 at optimum conditions. The kinetic and effect of internal mass transfer were studied for oxidation desulfurization of model fuel, also an empirical kinetic model was calculated for model fuels
... Show MoreIn this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
Due to the high mobility and dynamic topology of the FANET network, maintaining communication links between UAVs is a challenging task. The topology of these networks is more dynamic than traditional mobile networks, which raises challenges for the routing protocol. The existing routing protocols for these networks partly fail to detect network topology changes. Few methods have recently been proposed to overcome this problem due to the rapid changes of network topology. We try to solve this problem by designing a new dynamic routing method for a group of UAVs using Hybrid SDN technology (SDN and a distributed routing protocol) with a highly dynamic topology. Comparison of the proposed method performance and two other algorithms is simula
... Show MoreThe transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show More