4-amino-3-(4-(((4-hydroxy-3,5dimethoxybenzyl)oxy)methyl)phenyl)-1,2,4-triazole-5-thione was synthesized by to method the first one from melt reaction of 4-(((4-hydroxy-3,5-dimethoxybenzyl)oxy)methyl)benzoic acid with Thiocarbonyldihydrazide, the second method from convert the corresponded acid hydrazide to potassium 2-(4-(((4-hydroxy-3,5-dimethoxybenzyl)oxy)methyl)benzoyl)hydrazinecarbodithioate salt then react with hydrazine hydrate. Newly Schiff base (7a-7f) were synthesized from reaction the 4-amino-1,2,4-triazol with substituted hydroxybenzaldehyde. The resulting compounds were characterized by IR, 1H-NMR, 13C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to screened the antioxidant properties of the synthesized compounds. Compounds 7d , 7e and 7f exhibited significant free-radical scavenging ability in both assays
This work includes synthesis of new phenoxazine derivatives containing N-substituted phenoxazine starting from phenoxazine (1).10-nitrosyl phenoxazine was prepared through the reaction of phenoxazine with sodium nitrite to give compound (2), which reacted with zinc in acetic acid to give 10-amino phenoxazine (3). Condensation of compound (3) with benzoyl chloride, isovaleryl chloride and 4-bromophenacyl chloride gave 10-amido phenoxazine derivatives (4-6).
This work comprises the synthesis of new phenoxazine derivatives containing N-substituted phenoxazine starting from phenoxazine (1). Synthesis of ethyl acetate phenoxazine (2) through the reaction of phenoxazine with ethylchloroacetate, which reacted with hydrazine hydrate to give 10-aceto hydrazide phenoxazine (3), then reacted with formic acid to give 10-[N-formyl acetohydrazide] phenoxazine (4). Reaction of compound (4) with phosphorous pentaoxide or phosphorus pentasulphide to gave 10-[N-methylene-1,3,4-oxadiazole] phenoxazine (5) and 10-[N-methylene-1,3,4-thiadiazole] phenoxazine (6).
A series of new 2-quinolone derivatives linked to benzene sulphonyl moieties were performed by many steps: the first step involved preparation of different coumarins (A1,A2) by condensation of different substituted phenols with ethyl acetoacetate. The compound A1 was treated with nitric acid to afford two isomers of nitrocoumarin derivatives (A3) and (A4). The prepared compounds (A2, A3) were treated with hydrazine hydrate to synthesize different 2-quinolone compounds (A5,A6) while the coumarin treated with different amines gave compounds (A7,A8). Then the synthesized 2-quinolone compounds (A5-A8) treated with benzene sulphonyl chloride to afford new sulfonamide derivatives (A9-A12). The synthesized compounds were characterized by FT-IR, 1H
... Show MoreThe present study was designed to synthesize a number of new Ceftriaxone derivatives by its involvement with a series of different amines, through the chemical derivatization of its 2-aminothiazolyl- group into an amide with chloroacetyl chloride, which on further conjugation with these selected amines will produce compounds with pharmacological effects that may extend the antimicrobial activity of the parent compound depending on the nature of these moieties.
Ceftriaxone was first equipped with a spacer arm (linker) by the action of chloroacetyl chloride in aqueous medium and then further reacted with seven different aliphatic and aromatic amines which resulted in the production of the aimed final target products. The syntheses
... Show MoreThe compound [G1] was prepared from the reaction of thiosemicarbazide with para-hydroxyphenylmethyl ketone in ethanol as a solvent. Then by sequence reactions prepared [G2] and [G3] compounds. The compound [G4] reaction with ethyl acetoacetoneto synthesized compound [G6] and acetyl acetone to synthesized compound [G5]. Reaction the [G3] with two different types of aldehydes in the present of pipredine to form new alkenes compounds [G7]and [G8].The compound [G3] reacted with hydrazine hydrate to formation[G4] with present the hydrazine hydrade 80% in (10) ml of absolute ethanol. Latter the compound [G4]reacted with different aldehydes with present the glacial acetic acid and the solvent was ethanol to formed the Schiff bases compounds[G9] an
... Show MoreThe compound [G1] was prepared from the reaction of thiosemicarbazide with para-hydroxyphenylmethyl ketone in ethanol as a solvent. Then by sequence reactions prepared [G2] and [G3] compounds. The compound [G4] reaction with ethyl acetoacetoneto synthesized compound [G6] and acetyl acetone to synthesized compound [G5]. Reaction the [G3] with two different types of aldehydes in the present of pipredine to form new alkenes compounds [G7]and [G8].The compound [G3] reacted with hydrazine hydrate to formation[G4] with present the hydrazine hydrade 80% in (10) ml of absolute ethanol. Latter the compound [G4]reacted with different aldehydes with present the glacial acetic acid and the solvent was ethanol to formed the Schiff bases compounds[G9] an
... Show More1, 3, 4-oxadiazole-5-thion ring (2) successfully formed at position six of 2-methylphenol and five of their thioalkyl (3a-e). Furthermore 6-(5-(Aryl)-1, 3, 4-oxadiazol-2-yl)-2-methylphenol (5a-i) were formed at position six by two method. The first method was from cyclization their correspondinghydrazones (4a-e) of 2-hydroxy-3-methylbenzohydrazide (1) using bromine in glacial acetic acid. The second method was from cyclization the hydrazide with aryl carboxylic acid in the presence of phosphorusoxy chloride. The newly synthesized compounds were characterized from their IR, NMR and mass spectra. The antioxidant properties of these compounds were screened by 2, 2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) a
... Show More1,3,4-oxadiazole-5-thion ring (2) successfully formed at position six of 2-methylphenol and five of their thioalkyl (3a-e). Furthermore 6-(5-(Aryl)-1,3,4-oxadiazol-2-yl)-2-methylphenol (5a-i) were formed at position six by two method. The first method was from cyclization their corresponding hydrazones (4a-e) of 2-hydroxy-3-methylbenzohydrazide (1) using bromine in glacial acetic acid. The second method was from cyclization the hydrazide with aryl carboxylic acid in the presence of phosphorusoxy chloride. The newly synthesized compounds were characterized from their IR, NMR and mass spectra. The antioxidant properties of these compounds were screened by 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assay
... Show More