The data communication has been growing in present day. Therefore, the data encryption became very essential in secured data transmission and storage and protecting data contents from intruder and unauthorized persons. In this paper, a fast technique for text encryption depending on genetic algorithm is presented. The encryption approach is achieved by the genetic operators Crossover and mutation. The encryption proposal technique based on dividing the plain text characters into pairs, and applying the crossover operation between them, followed by the mutation operation to get the encrypted text. The experimental results show that the proposal provides an important improvement in encryption rate with comparatively high-speed Processing.
In this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained
Due to the vast using of digital images and the fast evolution in computer science and especially the using of images in the social network.This lead to focus on securing these images and protect it against attackers, many techniques are proposed to achieve this goal. In this paper we proposed a new chaotic method to enhance AES (Advanced Encryption Standards) by eliminating Mix-Columns transformation to reduce time consuming and using palmprint biometric and Lorenz chaotic system to enhance authentication and security of the image, by using chaotic system that adds more sensitivity to the encryption system and authentication for the system.
All modern critical approaches attempt to cover the meanings and overtones of the text, claiming that they are better than others in the analysis and attainment of the intended meanings of the text. The structural approach claims to be able to do so more than any other modern critical approach, as it claimed that it is possible to separate what is read from the reader, on the presumed belief that it is possible to read the text with a zero-memory. However, the studies in criticism of criticism state that each of these approaches is successful in dealing with the text in one or more aspects while failing in one or more aspects. Consequently, the criticism whether the approach possesses the text, or that the text rejects this possession, r
... Show MoreOne of the crucial public health problems worldwide is the urinary tract infections (UTIs) that are derived from uropathogenic bacteria (UPBs). Slime layer is known to have the ability to permit bacteria to achieve smooth surfaces attachment like catheters and prosthetic implants which in turn, facilitate biofilm formation and may cause lethal infections. On the other hand, Extended-spectrum beta-lactamase (ESBL) production is considered a growing concern among UPBs due to the limiting of the treatment options and contributes to resistance toward antibiotics. The principal study's point is the finding out the slime layer and ESBL production in Escherichia coli and Klebsiella pneumoniae of uropathogenic origin. Ten ready isolates (five isola
... Show MoreIn this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreThis paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm, the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely, exploration, exploitation, and randomization, in such a way that if one step improves the solution, then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has been compared with that of five other optimization algorithms over ten benchmark test functions. Nine of them are well-known and already exist in the literature, while the tenth one is proposed by the authors and introduced in this article. One test trial was shown t
... Show More