Reflection cracking in asphalt concrete (AC) overlays is a common form of pavement deterioration that occurs when underlying cracks and joints in the pavement structure propagate through an overlay due to thermal and traffic-induced movement, ultimately degrading the pavement’s lifespan and performance. This study aims to determine how alterations in overlay thickness and temperature conditions, the incorporation of chopped fibers, and the use of geotextiles influence the overlay’s capacity to postpone the occurrence of reflection cracking. To achieve the above objective, a total of 36 prism specimens were prepared and tested using an overlay testing machine (OTM). The variables considered in this study were the thickness of the overlay (40, 50, and 60 mm), temperature (20, 30, and 40 °C), mix type (reference mix and mix modified with 10% chopped fibers by weight of asphalt cement), and the inclusion of geotextile fabric at two positions (one-third of the depth from the base and at the bottom). The research outcomes revealed that a decreased temperature and thicker overlay led to a higher resistance to crack initiation and full propagation, as indicated by the values of critical fracture energy (Gc) and crack progression rate (CPR). Furthermore, the study observed the enhanced crack resistance of overlays in the presence of geotextiles, whether at the bottom or one-third of the depth from the bottom, with superior performance of the former. Despite a slight enhancement in certain properties, the incorporation of chopped fibers in the overlays did not substantially improve the overall performance compared to the reference specimens. Overall, the study provides valuable insights into the variables that influence the ability of AC overlays to mitigate reflection cracking. These findings will aid engineers and designers in making informed decisions regarding overlay design and construction.
Abstract-Industrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste
... Show MoreIndustrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste r
... Show MoreThe two-dimensional transient heat conduction through a thermal insulation of temperature dependent thermal properties is investigated numerically using the FVM. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner surface with a step change in temperature and subjected at its outer surface with a natural convection boundary condition associated with a periodic change in ambient temperature and heat flux of solar radiation. Two thermal insulation materials were selected. The fully implicit time scheme is selected to represent the time discretization. The arithmetic mean thermal conductivity is chosen to be the value of the approximated thermal conductivity at the i
... Show MoreCdSe quantum dots possess a tuning energy gap which can control gap values according to the size of the quantum dots, this is made the material able to absorb the wavelengths within visible light. A simple model is provided for the absorption coefficient, optical properties, and optical constants for CdSe quantum dots from the size 10nm to 1nm with the range of visible region between (300-730) nm at room temperature. It turns out that there is an absorption threshold for each wavelength, CdSe quantum dots begin to absorb the visible spectrum of 1.4 nm at room temperature for a wavelength of 300 nm. It has been noted that; when the wavelength is increased, the absorption threshold also increases. This applies to the optical propertie
... Show MoreThe corrosion behavior of carbon steel at different Temperatures and in water containing different sodium chloride
concentrations under 3 bar pressure has been investigated using weight loss method . The carbon steel specimens were
immersed in water containing (100,400,700,1000PPM) of NaCl solution and under temperature was increased from
(90-120ºC) under pressures of 3 bar. The results of this investigation indicated that corrosion rate increased with NaCl
concentrations and Temperature.
Objective(s): This study aims to evaluate the hardness of two commercially available cold cured acrylic resin material
(Vertex and PAN) when polymerized at different temperature in comparison to those polymerized by conventional
methods in air at 23C ± 5C.
Methodology: Eighty specimens, forty from cold cured acrylic (Vertex Type) and forty from cold cured acrylic (PAN
type) were prepared, flasking and packing procedure were done according to manufacturer direction and divided
according to processing as follow: 20 specimens (10 from Vertex type and 10 from PAN type) were processed in air for
two hours at 23C ± 5C under press (bench curing) as a control, and 60 specimens (30 from Vertex type and 30 from
PAN type) wer
The present study focused mainly on the analysis of stiffened and unstiffened composite laminated plates subjected to buckling load. Analytical, numerical and experimental analysis for different cases has been considered. The experimental investigation is to manufacture the laminates and to find mechanical properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus. The compressive test was carried to find the critical buckling load of plate. The design parameters of the laminates such as aspect ratio, thickness ratio, boundary conditions and number of stiffeners were investigated using high order shear deformation theory (HOST) and Finite element coded by ANSYS .The main conclusion was the buckling load c
... Show MoreThe last decade of this 20th century provides a wide spread of applications of one of the computer techniques, which is called Fuzzy Logic. This technique depends mainly on the fuzzy set theory, which is considered as a general domain with respect to the conventional set theory. This paper presents in initiative the fuzzy sets theory and fuzzy logic as a complete mathematics system. Here it was explained the concept of fuzzy set and defined the operations of fuzzy logic. It contains eleven operations beside the other operations which related to fuzzy algebra. Such search is considered as an enhancement for supporting the others waiting search activities in this field.
Joint diseases, such as osteoarthritis, induce pain and loss of mobility to millions of people around the world. Current clinical methods for the diagnosis of osteoarthritis include X-ray, magnetic resonance imaging, and arthroscopy. These methods may be insensitive to the earliest signs of osteoarthritis. This study investigates a new procedure that was developed and validated numerically for use in the evaluation of cartilage quality. This finite element model of the human articular cartilage could be helpful in providing insight into mechanisms of injury, effects of treatment, and the role of mechanical factors in degenerative
conditions, this three-dimensional finite element model is a useful tool for understanding of the stress d