The adsorption isotherms and kinetic uptakes of Carbon Dioxide (CO2) on fabricated electrospun nonwoven activated carbon nanofiber sheets were investigated at two different temperatures, 308 K and 343 K, over a pressure range of 1 to 7 bar. The activated carbon nanofiber-based on polymer (PAN) precursor was fabricated via electrospinning technique followed by thermal treatment to obtain the carboneous nanofibers. The obtained data of CO2 adsorption isotherm was fitted to various models, including Langmuir, Freundlich, and Temkin. Based on correlation coefficients, the Langmuir isotherm model presented the best fitting with CO2 adsorption isotherms’ experimental data. Raising the equilibrium adsorption temperature decreased the total amount adsorbed, indicating an exothermic adsorption process of CO2 on CNF and ACNF. It was also observed from the adsorption kinetic data that increasing the flow rate decreased the breakthrough point and the saturation time in the adsorption column. The efficiency of CO2 adsorption on ACNF (82 %) was better than that on nonwoven carbon nanofiber (CNF) (67 %) due to the high specific surface area and pore volume of ACNF (375 m2/g, 0.051 m3/g) comparing to CNF (20 m2/g, 0.0167 m3/g).
For criminal investigations, fingerprints remain the most reliable form of personal identification despite developments in other fields like DNA profiling. The objective of this work is to compare the performance of both commercial charcoal and activated carbon powder derived from the Alhagi plant to reveal latent fingerprints from different non-porous surfaces (cardboard, plain glass, aluminum foil sheet, China Dish, Plastic, and Switch). The effect of three variables on activated carbon production was investigated. These variables were the impregnation ratio (the weight ratio of KOH: dried raw material), the activation temperature, and the activation time. The effect factors were investigated using Central Composite Design
... Show MoreFor criminal investigations, fingerprints remain the most reliable form of personal identification despite developments in other fields like DNA profiling. The objective of this work is to compare the performance of both commercial charcoal and activated carbon powder derived from the Alhagi plant to reveal latent fingerprints from different non-porous surfaces (cardboard, plain glass, aluminum foil sheet, China Dish, Plastic, and Switch). The effect of three variables on activated carbon production was investigated. These variables were the impregnation ratio (the weight ratio of KOH: dried raw material), the activation temperature, and the activation time. The effect factors were investigated using Central Composite Design (CCD) softwa
... Show MoreCorncob is an agricultural biomass waste that was widely investigated as an adsorbent of contaminants after transforming it into activated carbon. In this research carbonization and chemical activation processes were achieved to synthesize corncob-activated carbon (CAC). Many pretreatment steps including crushing, grinding, and drying to obtain corncob powder were performed before the carbonization step. The carbonization of corncob powder has occurred in the absence of air at a temperature of 500 °C. The chemical activation was accomplished by using HCl as an acidic activation agent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) facilitate
... Show MoreThe high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show MoreBackground and objectives: Whether to use a cold scalpel or laser surgery to remove a lesion in the skin of the craniofacial area is the main question the surgeon asks him- or herself to do. The study tried to extend the literature with data that may help the surgeons to choose the right method. Methods: Thirty patients with intra- and extraoral craniofacial skin lesions managed by Carbone dioxide (CO2) laser surgery. Results: The most common type of lesion treated was melanocytic nevi (15 patients; 50%). Conclusion: The main complication of CO2 laser surgery is the remaining permanent hypopigmentation of the treated area; however, the CO2 laser has many advantages (especially at the time of surgery) making it a good choice for the manageme
... Show MoreCarbon dioxide geo-sequestration (CGS) into sediments in the form of (gas) hydrates is one proposed method for reducing anthropogenic carbon dioxide emissions to the atmosphere and, thus reducing global warming and climate change. However, there is a serious lack of understanding of how such CO2 hydrate forms and exists in sediments. We thus imaged CO2 hydrate distribution in sandstone, and investigated the hydrate morphology and cluster characteristics via x-ray micro-computed tomography in 3D in-situ. A substantial amount of gas hydrate (∼17% saturation) was observed, and the stochastically distributed hydrate clusters followed power-law relations with respect to their size distributions and surface area-volume relationships. The layer-
... Show MoreIn the present study, activated carbon supported metal oxides was prepared for thiophene removal from model fuel (Thiophene in n-hexane) using adsorptive desulfurization technique. Commercial activated carbon was loaded individually with copper oxide in the form of Cu2O/AC. A comparison of the kinetic and isotherm models of the sorption of thiophene from model fuel was made at different operating conditions including adsorbent dose, initial thiophene concentration and contact time. Various adsorption rate constants and isotherm parameters were calculated. Results indicated that the desulfurization was enhanced when copper was loaded onto activated carbon surface. The highest desulfurization percent for Cu2O/AC and o
... Show MorePharmaceuticals have been widely remaining contaminants in wastewater, and diclofenac is the most common pharmaceutical pollutant. Therefore, the removal of diclofenac from aqueous solutions using activated carbon produced by pyrocarbonic acid and microwaves was investigated in this research. Apricot seed powder and pyrophosphoric acid (45 wt%) were selected as raw material and activator respectively, and microwave irradiation technique was used to prepare the activated carbon. The raw material was impregnated in pyrophosphoric acid at 80◦C with an impregnation ratio of 1: 3 (apricot seeds to phosphoric acid), the impregnation time was 4 h, whereas the power of the microwave was 700 watts with a radiation time of 20 min. A series o
... Show MoreThis research presents a response surface methodology (RSM) with I‐optimal method of DESIGN EXPERT (version 13 Stat‐Ease) for optimization and analysis of the adsorption process of the cyanide from aqueous solution by activated carbon (AC) and composite activated carbon (CuO/AC) produced by pyro carbonic acid microwave using potato peel waste as raw material. Pyrophosphate 60% (wt) was used for impregnation with an impregnation ratio 3:1, impregnation time of 4 h at 25°C, radiant power of 700 W, and activation time of 20 min. Batch experiments were conducted to determine the removal efficiency of cyanide from aqueous solution to evaluate the influences of various experimental parameters su