Within this paper, we developed a new series of organic chromophores based on triphenyleamine (TPA) (AL1, AL-2, AL-11 and AL-22) by engineering the structure of the electron donor (D) unit via replacing a phenyle ring or inserting thiophene as a π-linkage. For the sake of scrutinizing the impact of the TPA donating ability and the spacer upon the photovoltaic, absorptional, energetic, and geometrical characteristic of these sensitizers, density functional theory (DFT) and time-dependent DFT (TD-DFT) have been utilized. According to structural characteristics, incorporating the acceptor, π-bridge and TPA does not result in a perfect coplanar conformation in AL-22. We computed EHOMO, ELUMO and bandgap (Eg) energies by performing frequency and ground-state calculations. Next, we performed TD-CAM-B3LYP calculations to compute oscillator strength (f) and the maximum adsorption wavelength (λmax). The absorption bands were extended up to ∼ 647 nm for AL-22. The findings demonstrated that AL-22 is the most promising dye among other dyes.
Classical cryptography systems exhibit major vulnerabilities because of the rapid development of quan tum computing algorithms and devices. These vulnerabilities were mitigated utilizing quantum key distribution (QKD), which is based on a quantum no-cloning algorithm that assures the safe generation and transmission of the encryption keys. A quantum computing platform, named Qiskit, was utilized by many recent researchers to analyze the security of several QKD protocols, such as BB84 and B92. In this paper, we demonstrate the simulation and implementation of a modified multistage QKD protocol by Qiskit. The simulation and implementation studies were based on the “local_qasm” simulator and the “FakeVigo” backend, respectively. T
... Show MoreIn this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show MoreIn this paper, the system of the power plant has been investigated as a special type of industrial systems, which has a significant role in improving societies since the electrical energy has entered all kinds of industries, and it is considered as the artery of modern life.
The aim of this research is to construct a programming system, which could be used to identify the most important failure modes that are occur in a steam type of power plants. Also the effects and reasons of each failure mode could be analyzed through the usage of this programming system reaching to the basic events (main reasons) that causing each failure mode. The construction of this system for FMEA is dependi
... Show MoreThe psychological burnout is considered one of dangerous phenomenon’s which appeared in the 70s of the 20th century and suffered by most of the society classes. It is a term which the wide uses and various meaning like emotional, mental, and physical exhaustion and chronic weak exhaustion. The presented research aims t identify the psychological burnout as for the Kindergarten teacher and the differences significance according to the variations (Kindergarten type: private or govern mental). The research sample contains 400 female teachers divided to 170 governmental Kindergarten teachers and 230 private Kindergarten teachers. The researcher prepared a measurement method to measure the psychological burnout for those teachers after
... Show MoreThe fluctuation and expansion ratios have been studied for cylindrical gas-solid fluidized columns by using air as fluidizing medium and Paracetamol as the bed material. The variables were the column diameter (0.0762, 0.15, and 0.18 m), static bed height (0.05, 0.07, and 0.09 m), and air velocity to several times of minimum fluidization velocity. The results showed that both the fluctuation and expansion ratios had a direct relation with air velocity and an inverse one with column diameter and static bed height. A good agreement was between the experimental results and the calculated values by using the correlation equations from the literature.
Industrial characteristics calculations concentrated on the physical properties for break down voltage in sf6, cf4 gases and their mixture with different concentrations are presented in our work. Calculations are achieved by using an improved modern code simulated on windows technique. Our results give rise to a compatible agreement with the other experimental published data.
Finding a path solution in a dynamic environment represents a challenge for the robotics researchers, furthermore, it is the main issue for autonomous robots and manipulators since nowadays the world is looking forward to this challenge. The collision free path for robot in an environment with moving obstacles such as different objects, humans, animals or other robots is considered as an actual problem that needs to be solved. In addition, the local minima and sharp edges are the most common problems in all path planning algorithms. The main objective of this work is to overcome these problems by demonstrating the robot path planning and obstacle avoidance using D star (D*) algorithm based on Particle Swarm Optimization (PSO)
... Show More