Preferred Language
Articles
/
lhYZAooBVTCNdQwCiY9a
Image encryption algorithm based on the density and 6D logistic map
...Show More Authors

One of the most difficult issues in the history of communication technology is the transmission of secure images. On the internet, photos are used and shared by millions of individuals for both private and business reasons. Utilizing encryption methods to change the original image into an unintelligible or scrambled version is one way to achieve safe image transfer over the network. Cryptographic approaches based on chaotic logistic theory provide several new and promising options for developing secure Image encryption methods. The main aim of this paper is to build a secure system for encrypting gray and color images. The proposed system consists of two stages, the first stage is the encryption process, in which the keys are generated depending on the chaotic logistic with the image density to encrypt the gray and color images, and the second stage is the decryption, which is the opposite of the encryption process to obtain the original image. The proposed method has been tested on two standard gray and color images publicly available. The test results indicate to the highest value of peak signal-to-noise ratio (PSNR), unified average changing intensity (UACI), number of pixel change rate (NPCR) are 7.7268, 50.2011 and 100, respectively. While the encryption and decryption speed up to 0.6319 and 0.5305 second respectively.

Scopus Crossref
View Publication
Publication Date
Mon Oct 01 2018
Journal Name
Ieee Transactions On Network Science And Engineering
A Resource Allocation Mechanism for Cloud Radio Access Network Based on Cell Differentiation and Integration Concept
...Show More Authors

View Publication
Crossref (15)
Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Physics: Conference Series
EEG Motor-Imagery BCI System Based on Maximum Overlap Discrete Wavelet Transform (MODWT) and cubic SVM
...Show More Authors
Abstract<p>Communication of the human brain with the surroundings became reality by using Brain- Computer Interface (BCI) based mechanism. Electroencephalography (EEG) being the non-invasive method has become popular for interaction with the brain. Traditionally, the devices were used for clinical applications to detect various brain diseases but with the advancement in technologies, companies like Emotiv, NeuoSky are coming up with low cost, easily portable EEG based consumer graded devices that can be used in various application domains like gaming, education etc as these devices are comfortable to wear also. This paper reviews the fields where the EEG has shown its impact and the way it has p</p> ... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
Proposed Framework for Official Document Sharing and Verification in E-government Environment Based on Blockchain Technology
...Show More Authors

Progression in Computer networks and emerging of new technologies in this field helps to find out new protocols and frameworks that provides new computer network-based services. E-government services, a modernized version of conventional government, are created through the steady evolution of technology in addition to the growing need of societies for numerous services. Government services are deeply related to citizens’ daily lives; therefore, it is important to evolve with technological developments—it is necessary to move from the traditional methods of managing government work to cutting-edge technical approaches that improve the effectiveness of government systems for providing services to citizens. Blockchain technology is amon

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Developing Load Balancing for IoT - Cloud Computing Based on Advanced Firefly and Weighted Round Robin Algorithms
...Show More Authors

The evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities.   Cloud computing can be used to store big data.  The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual r

... Show More
View Publication Preview PDF
Scopus (27)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Fri May 03 2024
Journal Name
Optical And Quantum Electronics
Design and analysis of a dual-core PCF biosensor based on SPR for cancerous cells detection
...Show More Authors

View Publication
Scopus (8)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2017
Journal Name
جامعة كرميان
The effect of a training program for chemistry teachers based on the strategy of both sides of the brain together on the thinking patterns of their students
...Show More Authors

Preview PDF
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Estimation of parameters of two-dimensional sinusoidal signal model by employing Deferential Evaluation algorithm and the use of Sequential approach in estimation
...Show More Authors

Estimation the unknown parameters of a two-dimensional sinusoidal signal model is an important and a difficult problem , The importance of this model  in modeling Symmetric gray- scale texture image . In this paper, we propose employment Deferential Evaluation algorithm and the use of Sequential approach to estimate the unknown frequencies and amplitudes of the 2-D sinusoidal components when the signal is affected by noise. Numerical simulation are performed for different sample size, and various level of standard deviation to observe the performance of this method in estimate the parameters of 2-D sinusoidal signal model , This model was used for modeling  the Symmetric gray scale texture image and estimating by using

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 05 2017
Journal Name
International Journal Of Science And Research (ijsr)
Automatic brain tumor segmentation from MRI images using region growing algorithm
...Show More Authors

LK Abood, RA Ali, M Maliki, International Journal of Science and Research, 2015 - Cited by 2

View Publication
Publication Date
Sun Mar 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Employment of the genetic algorithm in some methods of estimating survival function with application
...Show More Authors

Intended for getting good estimates with more accurate results, we must choose the appropriate method of estimation. Most of the equations in classical methods are linear equations and finding analytical solutions to such equations is very difficult. Some estimators are inefficient because of problems in solving these equations. In this paper, we will estimate the survival function of censored data by using one of the most important artificial intelligence algorithms that is called the genetic algorithm to get optimal estimates for parameters Weibull distribution with two parameters. This leads to optimal estimates of the survival function. The genetic algorithm is employed in the method of moment, the least squares method and the weighted

... Show More
Scopus (2)
Scopus
Publication Date
Fri Dec 30 2022
Journal Name
Journal Of Mathematics
Estimation of Parameters of Finite Mixture of Rayleigh Distribution by the Expectation-Maximization Algorithm
...Show More Authors

In the lifetime process in some systems, most data cannot belong to one single population. In fact, it can represent several subpopulations. In such a case, the known distribution cannot be used to model data. Instead, a mixture of distribution is used to modulate the data and classify them into several subgroups. The mixture of Rayleigh distribution is best to be used with the lifetime process. This paper aims to infer model parameters by the expectation-maximization (EM) algorithm through the maximum likelihood function. The technique is applied to simulated data by following several scenarios. The accuracy of estimation has been examined by the average mean square error (AMSE) and the average classification success rate (ACSR). T

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref