One of the most difficult issues in the history of communication technology is the transmission of secure images. On the internet, photos are used and shared by millions of individuals for both private and business reasons. Utilizing encryption methods to change the original image into an unintelligible or scrambled version is one way to achieve safe image transfer over the network. Cryptographic approaches based on chaotic logistic theory provide several new and promising options for developing secure Image encryption methods. The main aim of this paper is to build a secure system for encrypting gray and color images. The proposed system consists of two stages, the first stage is the encryption process, in which the keys are generated depending on the chaotic logistic with the image density to encrypt the gray and color images, and the second stage is the decryption, which is the opposite of the encryption process to obtain the original image. The proposed method has been tested on two standard gray and color images publicly available. The test results indicate to the highest value of peak signal-to-noise ratio (PSNR), unified average changing intensity (UACI), number of pixel change rate (NPCR) are 7.7268, 50.2011 and 100, respectively. While the encryption and decryption speed up to 0.6319 and 0.5305 second respectively.
Background: Poly (methyl methacrylate) has been widely utilized for fabrication of dentures for many years as it has good advantages but not achieved all demands of the mechanical properties such as low transverse strength, low impact strength, low surface hardness, high water solubility and high water sorption. Material and method: To provide bonding between ZrO2 nanoparticles and PMMA matrix, the ZrO2 Nano-fillers were surface-treated with a saline coupling agent. Plasma surface treatment of polyethylene (PE) fiber was done to change surface fiber by using DC- glow discharge system. For characterization of interring any functional groups, the (FTIR) spectrum were done .then the mechanical properties studied to choose the appropriate perc
... Show MoreThis study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin
Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreA model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure aga
... Show MoreElectronic remote identification (ER-ID) is a new radio frequency (RF) technology that is initiated by the Federal Aviation Authorities (FAA). For security reasons, traffic control, and so on, ER-ID has been applied for drones by the FAA to enable them to transmit their unique identification and location so that unauthorized drones can be identified. The current limitation of the existing ER-ID algorithms is that the application is limited to the Wi-Fi and Bluetooth wireless controllers, which results in a maximum range of 10–20 m for Bluetooth and 50–100 m for Wi-Fi. In this study, a mathematical computing technique based on finite state automaton (FSA) is introduced to expand the range of the ER-ID RF system and reduce the ene
... Show MoreIn all applications and specially in real time applications, image processing and compression plays in modern life a very important part in both storage and transmission over internet for example, but finding orthogonal matrices as a filter or transform in different sizes is very complex and importance to using in different applications like image processing and communications systems, at present, new method to find orthogonal matrices as transform filter then used for Mixed Transforms Generated by using a technique so-called Tensor Product based for Data Processing, these techniques are developed and utilized. Our aims at this paper are to evaluate and analyze this new mixed technique in Image Compression using the Discrete Wavelet Transfo
... Show MoreGroupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff
... Show MoreThe parameter and system reliability in stress-strength model are estimated in this paper when the system contains several parallel components that have strengths subjects to common stress in case when the stress and strengths follow Generalized Inverse Rayleigh distribution by using different Bayesian estimation methods. Monte Carlo simulation introduced to compare among the proposal methods based on the Mean squared Error criteria.
The nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square