In this study, low cost biosorbent ̶inactive biomass (IB) granules (dp=0.433mm) taken from drying beds of Al-Rustomia Wastewater Treatment Plant, Baghdad-Iraq were used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physico-chemical parameters such as initial metal ion concentration (50 to 200 mg/l), equilibrium time (0-180 min), pH (2-9), agitation speed (50-200 rpm), particles size (0.433 mm), and adsorbent dosage (0.05-1 g/100 ml) were studied. Six mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich–Peterson, Sips, Khan, and Toth models. The best fit to the Pb(II) and Ni(II) biosorption results was obtained by Langmuir model with maximum uptake capacities of 52.76 and 36.97 mg/g for these two ions respectively. While for Cu(II) the corresponding value was 38.07 mg/g obtained with Khan model. The kinetic study demonstrated that the optimum agitation speed was 400 rpm, at which the best removal efficiency and/or minimum surface mass transfer resistance (MSMTR) was achieved. A pseudosecond-order rate kinetic model gave the best fit to the experimental data (R 2 = 0.99), resulting in mass transfer coefficient values of 42.84×10−5, 1.57×10−5 , and 2.85×10−5 m/s for Pb(II), Cu(II), and Ni(II) respectively. The thermodynamic study showed that the biosorption process was spontaneous and exothermic in nature.
The aim of this work, is to study color filming by using different intensities of fluorescent light, where we evaluate the capture image qualities for the RGB bands and component of L. And we study the relation between the means of RGBL values of the images as a function of the power of fluorescent light circuit . From the results, we show that the mean μ increases rapidly at low power values, then it will reach the stability at high power values.
The relationships between the related parties constitute a normal feature of trading and business processes. Entities may perform parts of their activities through subsidiary entities, joint ventures and associate entities. In these cases, the entity has the ability to influence the financial and operating policies of the investee through control, joint control or significant influence, So could affect established knowledge of transactions and balances outstanding, including commitments, and relationships with related to the evaluation of its operations by users of financial statements, including the risks and opportunities facing the entity assess the parties. So research has gained importance of the importance of the availability
... Show MoreThe research aimed to know the effect of the Parashot strategy in developing the reading comprehension skills of first-grade intermediate students in reading. The researchers put the following two null hypotheses: There is no statistically significant difference at the level (0.05) between the average scores of the experimental group students who study the subject Reading with the Parashot strategy in the pre and post-tests in developing reading comprehension skills as a whole. There is no statistically significant difference at the level (0.05) between the average scores of the experimental group students who study the reading material using the Parashot strategy and the average scores of the control group students who study the same subje
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreAn investigation was provided in this work for the host range of brown soft scale Coccus hesperidum Linnaeus in Baghdad Province. Five plant species were found infected by this insect, three of these species, Citrusaurantium L. (Rutaceae); Nerium oleander L. (Apocynaceae); Ficuscarica L. (Moraceae) reported earlier, and the remaining two, Dahlia pinnata Cav. (Asteraceae) and Myrtuscommunis L. (Myrtaceae) are recordedhere for the first time as host plants for this pest.
The consensus algorithm is the core mechanism of blockchain and is used to ensure data consistency among blockchain nodes. The PBFT consensus algorithm is widely used in alliance chains because it is resistant to Byzantine errors. However, the present PBFT (Practical Byzantine Fault Tolerance) still has issues with master node selection that is random and complicated communication. The IBFT consensus technique, which is enhanced, is proposed in this study and is based on node trust value and BLS (Boneh-Lynn-Shacham) aggregate signature. In IBFT, multi-level indicators are used to calculate the trust value of each node, and some nodes are selected to take part in network consensus as a result of this calculation. The master node is chosen
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreThis article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.