In this work, the dyes Rhodamine B and Coumarin 102 containing titanium dioxide nanoparticles were used as scattering centers to fabricate a random gain medium. The laser dye was dissolved in hexanol and methanol solvent respectively. The titanium dioxide nanoparticles were synthesized by DC reaction magnetron spraying technique. The random-gain medium was made by adding 2.5 mg of titanium dioxide nanoparticles to Rhodamine and coumarin 102 dyes by coating the glass cell with two-sided titanium dioxide with high spectral efficiency and low production cost. A narrow line optical emission was detected at 565 nm for Rhodamine B and 534 nm for coumarin 102, where it was found that rhodamine B dye has FWHM 8 nm and coumarin dye 102 has FWHM 9 nm. Through this, it was concluded that by adding titanium dioxide, we increase the random gain of the pigments added to it. This is a very good start toward making high-efficiency and low-cost laser random transfer fabrication in the visible range.
Hyperpigmentation is the increase in the natural color of the skin. The purpose of this study is to evaluate the efficacy and safety of Q-Switched Nd:YAG (1064 & 532 nm) Laser in treatment of skin hyper pigmentation. This study was done in the research clinic of Institute of laser for postgraduate Studies/University of Baghdad from October 2008 to the end of January 2009. After clinical assessment of skin hyperpigmentation color, twenty six patients were divided according to their lesions. Eight Patients with freckles, seven patients with melasma, four patients with tattoo. Cases with tattoo, were subdivided into amateur tattoos two, professional tattoos one, and one traumatic tattoo. Four Patients with post inflammatory hyperpigment
... Show MoreThe applications of hot plasma are many and numerous applications require high values of the temperature of the electrons within the plasma region. Improving electron temperature values is one of the important processes for using this specification in plasma for being adopted in several modern applications such as nuclear fusion, plating operations and in industrial applications. In this work, theoretical computations were performed to enhance electron temperature under dense homogeneous plasma. The effect of power and duration time of pulsed Nd:YAG laser was studied on the heating of plasmas by inverse bremsstrahlung for several values for the electron density ratio. There results for these ca
... Show MoreThis paper demonstrates the spatial response uniformity (SRU) of two types of heterojunctions (CdS, PbS /Si) laser detectors. The spatial response nonuniformity of these heterojunctions is not significant and it is negligible in comparison with p+- n silicon photodiode. Experimental results show that the uniformity of CdS /Si is better than that of PbS /Si heterojunction
In this research , design and study a (beam expander) for the Nd – YAG laser with (1.06 ?m) Wavelength has been studied at 5X zoom with narrow diversion in the room temperature. by using (ZEMAX) to study the system. Evaluate its performance via (ZEMAX) outputs, as bright Spot Diagram via (RMS), Ray Fan Plot, Geometric Encircled Energy and the value of Focal shift. Then study the effect of field of view on the outputs in the room temperature.
A simplified theoretical comparison of the hydrogen chloride (HCl) and hydrogen fluoride (HF) chemical lasers is presented by using computer program. The program is able to predict quantitative variations of the laser characteristics as a function of rotational and vibrational quantum number. Lasing is assumed to occur in a Fabry-Perot cavity on vibration-rotation transitions between two vibrational levels of hypothetical diatomic molecule. This study include a comprehensive parametric analysis that indicates that the large rotational constant of HF laser in comparison with HCl laser makes it relatively easy to satisfy the partial inversion criterion. The results of this computer program proved their credibility when compared with th
... Show MoreIncreasing the power conversion efficiency (PCE) of silicon solar cells by improving their junction properties or minimizing light reflection losses remains a major challenge. Extensive studies were carried out in order to develop an effective antireflection coating for monocrystalline solar cells. Here we report on the preparation of a nanostructured cerium oxide thin film by pulsed laser deposition (PLD) as an antireflection coating for silicon solar cell. The structural, optical, and electrical properties of a cerium oxide nanostructure film are investigated as a function of the number of laser pulses. The X-ray diffraction results reveal that the deposited cerium oxide films are crystalline in nature and have a cubic fluorite. The field
... Show More