Preferred Language
Articles
/
lRibdJQBVTCNdQwCsBhF
Land cover change detection of Baghdad city using multi-spectral remote sensing imagery
...Show More Authors

Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
Enzyme Linked Immunosorbent Assay for Fumonisin B1 Detection in Local Corn Seeds from Baghdad-Iraq
...Show More Authors

Fungi produce a series of toxic compounds on corn, especially Fumonisin B1 (FB1) toxin produced by Fusarium spp. and promoting cancer activity in humans and animals. This study aimed to the isolation and identification of fungi associated with local corn seeds and the detection for the presence of FB1 by using ELISA technique. Thirty samples of corn ears were collected from silos and markets in Baghdad city during the period from November 2018 to March 2019. The present study found that Fusarium was the dominant isolate among fungi in terms of the relative density 57.07%, followed by Aspergillus 31.17%, Rhizopus 3.36%, Alternaria 2.88%, Mucor 2.16%, Penicillium 1.92%, Trichothecium 0.96%, and Helminthosporium 0.48%. FB1 was detected in a

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Mon May 01 2017
Journal Name
Australian Journal Of Basic And Applied Sciences
Sprite Region Allocation Using Fast Static Sprite Area Detection Algorithm
...Show More Authors

Background: Sprite coding is a very effective technique for clarifying the background video object. The sprite generation is an open issue because of the foreground objects which prevent the precision of camera motion estimation and blurs the created sprite. Objective: In this paper, a quick and basic static method for sprite area detection in video data is presented. Two statistical methods are applied; the mean and standard deviation of every pixel (over all group of video frame) to determine whether the pixel is a piece of the selected static sprite range or not. A binary map array is built for demonstrating the allocated sprite (as 1) while the non-sprite (as 0) pixels valued. Likewise, holes and gaps filling strategy was utilized to re

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Arabic Cyberbullying Detection Using Support Vector Machine with Cuckoo Search
...Show More Authors

      Cyberbullying is one of the biggest electronic problems that takes multiple forms of harassment using various social media. Currently, this phenomenon has become very common and is increasing, especially for young people and adolescents. Negative comments have a significant and dangerous impact on society in general and on adolescents in particular. Therefore, one of the most successful prevention methods is to detect and block harmful messages and comments. In this research, negative Arabic comments that refer to cyberbullying will be detected using a support vector machine algorithm. The term frequency-inverse document frequency vectorizer and the count vectorizer methods were used for feature extraction, and the results wer

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Svu-international Journal Of Engineering Sciences And Applications
Water Quality Detection using cost-effective sensors based on IoT
...Show More Authors

Crossref (1)
Crossref
Publication Date
Sun Feb 28 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
Intelligent System for Parasitized Malaria Infection Detection Using Local Descriptors
...Show More Authors

Malaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based f

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Development an Anomaly Network Intrusion Detection System Using Neural Network
...Show More Authors

Most intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Sequential feature selection for heart disease detection using random forest
...Show More Authors

Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential f

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Wed Aug 25 2021
Journal Name
2021 7th International Conference On Contemporary Information Technology And Mathematics (iccitm)
Anomaly Detection in Flight Data Using the Naïve Bayes Classifier
...Show More Authors

View Publication
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Neuroscience Informatics
Epileptic EEG activity detection for children using entropy-based biomarkers
...Show More Authors

View Publication
Scopus (12)
Crossref (8)
Scopus Crossref
Publication Date
Tue Dec 28 2021
Journal Name
2021 2nd Information Technology To Enhance E-learning And Other Application (it-ela)
Pedestrian and Objects Detection by Using Learning Complexity-Aware Cascades
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref