Preferred Language
Articles
/
lRiYLJQBVTCNdQwCbgPW
Improving asphalt concrete durability through soda lignin powder
...Show More Authors

Lignin has emerged as a promising asphalt binder modifier due to its sustainable and renewable nature, with the potential to improve flexible pavement performance. This study investigates the use of Soda Lignin Powder (SLP), derived from Pinus wood sawdust via alkaline treatment, as an asphalt modifier to enhance mixture durability. SLP was characterized using Fourier Transformation Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Scanning Electron Microscopy with Energy Dispersive X-ray Analysis (SEM/EDX), revealing significant changes in its chemical structure post-extraction. These analyses showed the presence of phenolic units, including hydroxyphenyl propane, syringyl, and guaiacyl units. The morphology of SLP was identified as irregular and spherical particles consisting of carbon, oxygen, nitrogen, and sulfur. Experimental evaluations involved three SLP dosages (2%, 4%, and 6% by weight of asphalt binder), with tests for penetration, softening point, ductility and rotational viscosity. Additionally, the asphalt mixtures were tested for their performance in terms of moisture susceptibility, resilient modulus, permanent deformation, and fatigue resistance. Results indicated that SLP effectively reduces the temperature susceptibility of asphalt by increasing its stiffness and rotational viscosity. Furthermore, mixtures with 6% SLP showed enhanced moisture resistance, with a Tensile Strength Ratio (TSR) of 86.98%, a 74.1% reduction in accumulated permanent deformation at 10,000 cycles, and a 38.1% increase in the Cracking Tolerance Index (CT index) compared to the control mix (0% SLP content). These findings confirm that SLP has the potential to be an effective additive in the design of asphalt mixture. Moreover, it allows producing endurable mixtures with higher resistance to distress.

Scopus Crossref
View Publication
Publication Date
Tue Sep 24 2019
Journal Name
Journal Of Engineering
Flexural Performance of Laced Reinforced Concrete Beams under Static and Fatigue Loads
...Show More Authors

This paper introduces experimental results of eighteen simply supported reinforced concrete beams of cross sections ( ) and length 3000 mm to study the effect of lacing reinforcement on the performance of such beams under static and fatigue loads. Twelve reinforced concrete beams (two of them are casted with vertical shear reinforcement used as control beams) are tested under four points bending loading with displacement control technique and six laced reinforced concrete beams were exposed to high frequency (10 Hz) by fixing the fatigue load in each cycle. Three parameters are used in the designed beams, which are: lacing bar diameter (4mm, 6mm, and 8mm), lacing bar inclination angle to horizontal , and lacing steel rat

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 13 2018
Journal Name
International Journal Of Engineering & Technology
Effect of Steel Fiber on Properties of High Performance No-Fine Concrete
...Show More Authors

No-fine concrete (NFC) is cellular concrete and it’s light weight concrete produced with the exclusion of sand from the concrete. This study includes the mechanical properties of lightweight reinforced by steel fiber, containing different proportions of steel fiber. This study was done using number of tests. These tests were density, compressive strength, flexural strength and absorption. These tests of the molds at different curing time. The results of tests that implication of fiber to No. fine concrete did not affect significantly on the compressive strength, While the flexural strength were gets better. Results explained that, the flexural strength of (1%) fiber No- fine concrete molds are four times that of the reference mold

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
Effect of Kerosene and Gasoline on Some Properties of High Performance Concrete
...Show More Authors

During the last quarter century, many changes have taken place in the tanks industry and also in the materials that used in its production، while concrete is the most suitable material where concrete tanks has the benefits of strength, long service life and cost effectiveness. So, it is necessary improvement the
conventional concrete in order to adapt the severe environment requirements and as a result high
performance concrete (HPC) was used. It is not fundamentally different from the concrete used in the past, although it usually contains fly ash, ground granulated blast furnace slag and silica fume, as well as
superplasticizer. So, the content of cementitious material is high and the water/cement ratio is low. In this
stu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Strengthening of Reinforced Concrete T- Section Beams Using External Post-Tensioning Technique
...Show More Authors

This research is carried out to investigate the externally post-tensioning technique for strengthening RC beams. In this research, four T-section  RC beams having the same dimensions and material properties were casted and tested up to failure by applying two mid-third concentrated loads. Three of these beams are strengthened by using external tendons, while the remaining beam is kept without strengthening as a control beam. Two external strands of 12 mm diameter were fixed at each side of the web of the strengthened beams and located at depth of 200 mm from top fiber of the section (dps). So that the depth of strands to overall depth of the section ratio (dps

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 15 2017
Journal Name
School Of Engineering
Development of novel demountable shear connectors for precast steel-concrete composite bridges
...Show More Authors

Two novel demountable shear connectors for precast steel-concrete composite bridges are presented. The connectors use high-strength steel bolts, which are fastened to the steel beam with the aid of a special locking configuration that prevents slip of bolts within their holes. Moreover, the connectors promote accelerated construction and overcome typical construction tolerances issues of precast structures. Most importantly, the connectors allow bridge disassembly, and therefore, can address different bridge deterioration scenarios with minimum disturbance to traffic flow, i.e. (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (3) steel beams can be replaced, while precast

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 10 2022
Journal Name
Buildings
Behavior of One-Way Reinforced Concrete Slabs with Polystyrene Embedded Arched Blocks
...Show More Authors

This study presents experimental and numerical investigations on seven one-way, reinforced concrete (RC) slabs with a new technique of slab weight reduction using polystyrene-embedded arched blocks (PEABs). All slabs had the same dimensions, steel reinforcement, and concrete compressive strength. One of these slabs was a solid slab, which was taken as a control slab, while the other six slabs were cast with PEABs. The main variables were the ratio of the length of the PEABs to the length of the slab (lp/L) and the ratio of the height of the PEABs to the total slab depth (hP/H). The minimum decrease in the ultimate load capacity was about 6% with a minimum reduction in the slab weight of 15%. In contrast, the maximum decrease in the

... Show More
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Civil And Environmental Engineering
Effect of Alkali - Activated Natural Pozzolan on Mechanical Properties of Geopolymer Concrete
...Show More Authors

As an alternative to Ordinary Portland Cement (OPC), the alkali-activated binders have been developed with better technical characteristics and more extended durability. The Alkali-Activated Iraqi Natural Pozzolans (AANP) could produce geopolymer cementation building materials and make them ecologically acceptable. The primary advantage of geopolymer cement is that it has a lower environmental effect that contributes to it. The engineering characteristics of geopolymer concrete produced using activated Iraqi natural Pozzolan are summarized in this research. The mechanical properties, modulus of elasticity, and ultrasonic pulse velocity of various concrete mixes were determined via experimental study. The impact of essential variables like w

... Show More
View Publication
Scopus (11)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Application of Sulfur-2,4-dinitrophenylhydrazine as Modifier for Producing an Advantageous Concrete
...Show More Authors

In this investigative endeavor, a novel concrete variety incorporating sulfur-2,4-dinitrophenylhydrazine modification was developed, and its diverse attributes were explored. This innovative concrete was produced using sulfur-2,4-dinitrophenylhydrazine modification and an array of components. The newly created sulfur-2,4-dinitrophenylhydrazine modifier was synthesized. The surface texture resulting from this modifier was examined using SEM and EDS techniques. The component ratios within concrete, chemical and physical traits derived from the sulfur-2,4-dinitrophenylhydrazine modifier, chemical and corrosion resistance of concrete, concrete stability against water absorption, concrete resilience against freezing, physical and mechanical p

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Tue Oct 12 2021
Journal Name
Engineering, Technology & Applied Science Research
The Effect of Nanomaterials on the Properties of Limestone Dust Green Concrete
...Show More Authors

Portland cement is considered the most involved product in environmental pollution. It is responsible for about 10% of global CO2 emissions [1]. Limestone dust is a by-product of limestone plants and it is produced in thousands of tons annually as waste material. To fulfill sustainability requirements, concrete production is recommended to reduce Portland cement usage with the use of alternative or waste materials. The production of sustainable high strength concrete by using nanomaterials is one of the aims of this study. Limestone dust in 12, 16, and 20% by weight of cement replaced cement in this study. The study was divided into two parts: the first was devoted to the investigation of the best percentage of replacement of waste

... Show More
View Publication
Crossref (8)
Crossref
Publication Date
Fri Jun 30 2017
Journal Name
Journal Of Engineering
Enhancing Performance of Self–Compacting Concrete with Internal Curing Using Thermostone Chips
...Show More Authors

This paper is devoted to investigate the effect of internal curing technique on the properties of self-compacting concrete (SCC). In this study, SCC is produced by using silica fume (SF) as partial replacement by weight of cement with percentage of (5%), sand is partially replaced by volume with saturated fine lightweight aggregate (LWA) which is thermostone chips as internal curing material in three percentages of (5%, 10% and 15%) for SCC, two external curing conditions water and air. The experimental work was divided into three parts: in the first part, the workability tests of fresh SCC were conducted. The second part included conducting compressive strength test and modulus of rupture test at ages of (7, 28 and 90). The third part i

... Show More
View Publication Preview PDF