Lignin has emerged as a promising asphalt binder modifier due to its sustainable and renewable nature, with the potential to improve flexible pavement performance. This study investigates the use of Soda Lignin Powder (SLP), derived from Pinus wood sawdust via alkaline treatment, as an asphalt modifier to enhance mixture durability. SLP was characterized using Fourier Transformation Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Scanning Electron Microscopy with Energy Dispersive X-ray Analysis (SEM/EDX), revealing significant changes in its chemical structure post-extraction. These analyses showed the presence of phenolic units, including hydroxyphenyl propane, syringyl, and guaiacyl units. The morphology of SLP was identified as irregular and spherical particles consisting of carbon, oxygen, nitrogen, and sulfur. Experimental evaluations involved three SLP dosages (2%, 4%, and 6% by weight of asphalt binder), with tests for penetration, softening point, ductility and rotational viscosity. Additionally, the asphalt mixtures were tested for their performance in terms of moisture susceptibility, resilient modulus, permanent deformation, and fatigue resistance. Results indicated that SLP effectively reduces the temperature susceptibility of asphalt by increasing its stiffness and rotational viscosity. Furthermore, mixtures with 6% SLP showed enhanced moisture resistance, with a Tensile Strength Ratio (TSR) of 86.98%, a 74.1% reduction in accumulated permanent deformation at 10,000 cycles, and a 38.1% increase in the Cracking Tolerance Index (CT index) compared to the control mix (0% SLP content). These findings confirm that SLP has the potential to be an effective additive in the design of asphalt mixture. Moreover, it allows producing endurable mixtures with higher resistance to distress.
These days, the world is facing a global environmental and sustainability problem due to the increasing generation of large amounts of waste through construction and demolition work, which causes a serious problem for the environment. Therefore, this research was conducted to get rid of the waste disposal problems, including old glass and concrete, which were used as recycled fine aggregates. Seven different mixtures were prepared. The first mixture was with the used sand, which is glass sand, and it was adopted as a reference mixture (ORPC), and three mixtures were prepared for each of the recycled materials (waste concrete and glass) and partially replaced by glass sand in different proportions (25, 50, and 75) %. Some
... Show MoreIn this paper, mesoscale modeling is performed to simulate and understand fracture behavior of two concrete composites: cement and asphalt concrete using disk-shaped compact tension (DCT) tests. Mesoscale models are used as alternative to macroscale models to obtain better realistic behavior of composite and heterogeneous materials such as cement and asphalt concrete. In mesoscale models, aggregate and matrix are represented as distinct materials and each material has its characteristic properties. Disk-shaped compact tension test is used to obtain tensile strength and fracture energy of materials. This test can be used as a better alternative to other tests such as three points bending tests because it is more convenient for both field and
... Show MoreThe High Modulus Asphalt Concrete Mixture (HMACM) or (EME) (Enrobes a Module Eleve) developed in France, since, 1980 by Laboratories Central des Ponts et Chaussees (LCPC). Due to the increasing in traffic intensity and axle loading this type of mixing were suitable for pavement subjected to heavy duty. Experiments showed that EME mixtures have an excellent moisture damage resistance permanent deformation, fatigue cracking and reducing costs of maintenance and a significant reduction in thickness of pavement. Because of the high stiffness of EME mixes, the stresses transformed to the bottom laid layer by repeated traffic wheel loads were reduced effectively. This study intend to focus the light into the possibility of producing asphalt mixtu
... Show MoreMoisture damage is a primary mode of distress occurring in hot mix asphalt (HMA) pavements in Iraq. Because of the loss of bond, or stripping, caused by the presence of moisture between the asphalt and aggregate, which is a problem in some areas and can be severe in some cases, it is requires to evaluate the design asphalt mixture to moisture susceptibility. Many factors such as aggregate characteristics, asphalt characteristics, environment, traffic, construction practices and drainage can contribute to stripping. Asphalt concrete mixes were prepared at their optimum asphalt content by superpave system and then tested to evaluate their engineering properties, which include tensile strength, resilient modulus, and perman
... Show More The performance of asphalt concrete pavement has affected by many factors, the temperature is the most important environmental one which has a large effect on the structural behavior of flexible pavement materials. The main cause of premature failure of pavement is the rutting, Due to the viscoelastic nature of the asphalt cement, rutting is more pronounced in hot climate areas because the viscosity of the asphalt binder which is
inversely related to rutting is significantly reduced with the increase in temperature resulting in a more rut susceptible paving mixtures. The objective of this study is to determine the effect of temperatures variations on the permanent deformation parameters (perm
This investigation was undertaken to evaluate the effectiveness of using Hydrated lime as a (partial substitute) by weight of filler (lime stone powder) with five consecutive percentage namely (1.0, 1.5, 2.0, 2.5, 3.0) % by means of aggregate treatment, by introducing dry lime on dry and 2–3% Saturated surface aggregate on both wearing and binder coarse. Marshall design method, indirect tensile test and permanent deformation under repeated loading of Pneumatic repeated load system at full range of temperature (20, 40, 60) C0 were examined The study revealed that the use of 2.0% and 1.5 % of dry and wet replacement extend the pavement characteristics by improving the Marshall properties and increasing the TSR%. Finally, increase permanent
... Show MoreLaboratory experience in Iraq with cold asphalt concrete mixtures is very limited. The design and use of cold mixed asphalt concrete had no technical requirements. In this study, two asphalt concrete mixtures used for the base course were prepared in the laboratory using conventional cold-mixing techniques to test cold asphalt mixture (CAM) against aging and moisture susceptibility. Cold asphalt mixtures specimens have been prepared in the lab with cutback and emulsion binders, different fillers, and curing times. Based on the Marshal test result, the cutback proportion was selected with the filler, also based on the Marshal test emulsion. The first mixture was medium setting cationic emulsion (MSCE) as a binder, hydrate
... Show MoreThe concrete need curing for cement hydration that is a chemical reaction in each step require water supply throughout the time period. The traditional concrete cured by external method that prevents the concrete surface dry so that keeping the concrete mixture wet and warm. The internal curing was adopted in normal and high strength concrete such as reactive powder concrete. In present paper, experimental approach is to study the mechanical properties of reactive powder concrete cured internally with thermostone material. The materials that adopted to evaluate and find out the influences of the internal curing on the mechanical properties of reactive powder concrete is focused with d
Non-biodegradability of rubber tires contributes to pollution and fire hazards in the natural environment. In this study, the flexural behavior of the Rubberized Reactive Powder Concrete (RRPC) beams that contained various proportions and sizes of scrap tire rubber was investigated and compared to the flexural behavior of the regular RPC. Fresh properties, hardened properties, load-deflection relation, first crack load, ultimate load, and crack width are studied and analyzed. Mixes were made using micro steel fiber of the straight type, and they had an aspect ratio of 65. Thirteen beams were tested under two loading points (Repeated loading) with small-scale beams (1100 mm, 150 mm, 100 mm) size.
The fine aggregate
... Show More