Lignin has emerged as a promising asphalt binder modifier due to its sustainable and renewable nature, with the potential to improve flexible pavement performance. This study investigates the use of Soda Lignin Powder (SLP), derived from Pinus wood sawdust via alkaline treatment, as an asphalt modifier to enhance mixture durability. SLP was characterized using Fourier Transformation Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Scanning Electron Microscopy with Energy Dispersive X-ray Analysis (SEM/EDX), revealing significant changes in its chemical structure post-extraction. These analyses showed the presence of phenolic units, including hydroxyphenyl propane, syringyl, and guaiacyl units. The morphology of SLP was identified as irregular and spherical particles consisting of carbon, oxygen, nitrogen, and sulfur. Experimental evaluations involved three SLP dosages (2%, 4%, and 6% by weight of asphalt binder), with tests for penetration, softening point, ductility and rotational viscosity. Additionally, the asphalt mixtures were tested for their performance in terms of moisture susceptibility, resilient modulus, permanent deformation, and fatigue resistance. Results indicated that SLP effectively reduces the temperature susceptibility of asphalt by increasing its stiffness and rotational viscosity. Furthermore, mixtures with 6% SLP showed enhanced moisture resistance, with a Tensile Strength Ratio (TSR) of 86.98%, a 74.1% reduction in accumulated permanent deformation at 10,000 cycles, and a 38.1% increase in the Cracking Tolerance Index (CT index) compared to the control mix (0% SLP content). These findings confirm that SLP has the potential to be an effective additive in the design of asphalt mixture. Moreover, it allows producing endurable mixtures with higher resistance to distress.
Roller-Compacted Concrete is a no-slump concrete, with no reinforcing steel, no forms, no finishing and wet enough to support compaction by vibratory rollers. Due to the effect of curing on properties and durability of concrete, the main purpose of this research is to study the effect of various curing methods (air curing, 7 days water curing, and permanent water curing) and porcelanite (local material used as an Internal Curing agent) with different replacement percentages of fine aggregate (volumetric replacement) on some properties of Roller-Compacted Concrete and to explore the possibility of introducing practical Roller-Compacted Concrete for road pavement with minimum requirement of curing. Specimens were sawed fro
... Show More
Purpose: Providing practical knowledge of the requirements of a detailed feasibility study for selecting the investment project.
Findings: Directing the private sector towards investing in productive projects - the pre-cast reinforced concrete project - as it achieves a financial return as well as providing Providing foreign currencies by reducing imports and exploiting available natural resources
Practical implications: The importance of a detailed feasibility study to determining whether the project can be implemented or not.
The precast concrete method is one of the best modern c
... Show MoreThis work is concerned with the study of the effect of cement types, particularly OPC and SRPC, which are the main cement types manufactured in Iraq. In addition, study the effect of mineral admixtures, which are HRM and SF on the resistance of high performance concrete (HPC) to internal sulphate attack. The HRM is used at (10%) and SF is used at (8 and 10)% as a partial replacement by weight of cement for both types. The percentages of sulphate investigated are (1,2 and 3)% by adding natural gypsum as a partial replacement by weight of fine aggregate. The tests carried out in this work are: compressive strength, flexural strength, ultrasonic pulse velocity, and density at the age of 7, 28, 90 and 120 days.
The r
... Show MoreIn Australia, most of the existing buildings were designed before the release of the Australian standard for earthquake actions in 2007. Therefore, many existing buildings in Australia lack adequate seismic design, and their seismic performance must be assessed. The recent earthquake that struck Mansfield, Victoria near Melbourne elevated the need to produce fragility curves for existing reinforced concrete (RC) buildings in Australia. Fragility curves are frequently utilized to assess buildings’ seismic performance and it is defined as the demand probability surpassing capacity at a given intensity level. Numerous factors can influence the results of the fragility assessment of RC buildings. Among the most important factors that can affe
... Show MoreConcrete structures are exposed to aggressive environmental conditions that lead to corrosion of the embedded reinforcement and pre-stressing steel. Consequently, the safety of concrete structures may be compromised, and this requires a significant budgets to repair and maintain critical infrastructure. Prediction of structural safety can lead to significant reductions in maintenance costs by maximizing the impact of investments. The aim of this paper is to establish a framework to assess the reliability of existing post-tensioned concrete bridges. A time-dependent reliability analysis of an existing post-tensioned involving the assessment of Ynys-y-Gwas bridge has been presented in this study. The main cause of failure of this bridge was c
... Show MoreThis paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the dee
... Show MoreIn this study, simply supported reinforced concrete (RC) beams were analyzed using the Extended Finite Element Method (XFEM). This is a powerful method that is used for the treatment of discontinuities resulting from the fracture process and crack propagation in concrete. The mesoscale is used in modeling concrete as a two-phasic material of coarse aggregate and cement mortar. Air voids in the cement paste will also be modeled. The coarse aggregate used in the casting of these beams is a rounded aggregate consisting of different maximum sizes. The maximum size is 25 mm in the first model, and in the second model, the maximum size is 20 mm. The compressive strength used in these beams is equal to 26 MPa.
The subje
... Show MoreThis study aimed to evaluate the effectiveness of a novel concrete-encased column (CE) using small circular steel tubes filled with cementitious grouting material (GFST) as the primary reinforcement instead of traditional steel bars. The research involved three different types of reinforcement: conventional steel bars, concrete-filled steel tubes with 30% of the reinforcement ratio of steel bars, and concrete-filled steel tubes with the same reinforcement ratio as steel bars. Twenty-four circular concrete columns were tested and categorized into six groups based on the type of reinforcement employed. Each group comprised four columns, with one subjected to concentric axial load, two subjected to eccentric axial load (with eccentrici
... Show MoreThis paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation
... Show More