Almost all thermal systems utilize some type of heat exchanger. In a lot of cases, evaporators are important for systems like organic Rankine cycle systems. Evaporators give a share in a large portion of the capital cost, and their cost is significantly attached to their size or transfer area. Open-cell metal foams with high porosity are taken into consideration to enhance thermal performance without increase the size of heat exchangers. Numerous researchers have tried to find a representation of the temperature distribution closer to reality due to the different properties between the liquid and solid phases. Evaporation heat transfer in an annular pipe of double pipe heat exchanger (DPHEX) filled with cooper foam is investigated numerically with utilizing the local thermal non-equilibrium (LTNE) model. Warm water with constant inlet conditions flows in the inner pipe while R143a is used as cooling fluid in the annular pipe. The effects of pores per inch (PPI), mass flux of R134a and copper foam porosity on solid and fluid temperatures, liquid saturation and heat transfer coefficient are analysed and illustrated. Forchheimer-extended Darcy flow model is utilized with the adopting of the two-phase mixture model (TPMM). The governing equations in two-dimensional steady state regime were written in LTNE model. These equations were discretized using the finite volume method and a MATLAB program was built to solve these equations with its initial and boundary conditions. The obtained data illustrates that LTNE effect in metal foam is important for lower porosity, lower pore density and higher mass flux. The ratio of liquid will arrive its lowest value at the outlet, and it decreases with PPI increase and it increases with porosity and mass flux increase. The mean heat transfer coefficient approximately doubled when PPI increased from 10 to 50 and it increased by 70% when porosity decreased from 0.95 to 0.85.
The focus of this research lies in the definition of an important aspect of financial development, which is reflected on the alleviation of poverty in Iraq, namely financial inclusion and then taking the path of achieving a sustainable economy, certainly after reviewing one of the important international experiences in this regard and finally measuring the level of financial inclusion in Iraq and its impact on poverty reduction through the absolute poverty line indicator.
One-third of the total waste generated in the world is construction and demolition waste. Reducing the life cycle of building materials includes increasing their recycling and reuse by using recycled aggregates. By preventing, the need to open new aggregate quarries and reducing the amount of construction waste dumped into landfills, the use of recycled concrete aggregate in drum compacted concrete protects the environment. Four samples of PRCC were prepared for testing (compressive strength, tensile strength, flexural strength, density, water absorption, porosity) as the reference mix and (10, 15, and 20%) of fine recycled concrete aggregate as a partial replacement for fine natural aggregate by volume. The mix is designed according to
... Show MoreGangyong Lee, S.Tariq Rizvi, and Cosmin S.Roman studied Rickart modules.
The main purpose of this paper is to develop the properties of Rickart modules .
We prove that each injective and prime module is a Rickart module. And we give characterizations of some kind of rings in term of Rickart modules.
Let R be a commutative ring with identity and let M be a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of semi-essential submodules which introduced by Ali S. Mijbass and Nada K. Abdullah, and we make simple changes to the definition relate with the zero submodule, so we say that a submodule N of an R-module M is called semi-essential, if whenever N ∩ P = (0), then P = (0) for each prime submodule P of M. Various properties of semi-essential submodules are considered.
The ground state proton, neutron and matter densities and
corresponding root mean square radii of unstable proton-rich 17Ne
and 27P exotic nuclei are studied via the framework of the twofrequency
shell model. The single particle harmonic oscillator wave
functions are used in this model with two different oscillator size
parameters core b and halo , b the former for the core (inner) orbits
whereas the latter for the halo (outer) orbits. Shell model calculations
for core nucleons and for outer (halo) nucleons in exotic nuclei are
performed individually via the computer code OXBASH. Halo
structure of 17Ne and 27P nuclei is confirmed. It is found that the
structure of 17Ne and 27P nuclei have 2
5 / 2 (1d ) an
The concept of semi-essential semimodule has been studied by many researchers.
In this paper, we will develop these results by setting appropriate conditions, and defining new properties, relating to our concept, for example (fully prime semimodule, fully essential semimodule and semi-complement subsemimodule) such that: if for each subsemimodule of -semimodule is prime, then is fully prime. If every semi-essential subsemimodule of -semimodule is essential then is fully essential. Finally, a prime subsemimodule of is called semi-relative intersection complement (briefly, semi-complement) of subsemimodule in , if , and whenever with is a prime subsemimodule in , , then . Furthermore, some res
... Show MoreThe concept of a 2-Absorbing submodule is considered as an essential feature in the field of module theory and has many generalizations. This articale discusses the concept of the Extend Nearly Pseudo Quasi-2-Absorbing submodules and their relationship to the 2-Absorbing submodule, Quasi-2-Absorbing submodule, Nearly-2-Absorbing submodule, Pseudo-2-Absorbing submodule, and the rest of the other concepts previously studied. The relationship between them has been studied, explaining that the opposite is not true and that under certain conditions the opposite becomes true. This article aims to study this concept and gives the most important propositions, characterizations, remarks, examples, lemmas, and observations related to it. In the en
... Show MoreIn this work we study gamma modules which are implying full stability or implying by full stability. A gamma module is fully stable if for each gamma submodule of and each homomorphism of into . Many properties and characterizations of these classes of gamma modules are considered. We extend some results from the module to the gamma module theories.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show MoreThroughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.