Preferred Language
Articles
/
lRfgPo8BVTCNdQwCGGXF
MR Images Classification of Alzheimer's Disease Based on Deep Belief Network Method
...Show More Authors

Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the use of Gray Level Co-occurrence Matrix (GLCM) features and DBN classifier provides 98.26% accuracy with the two specific classes were tested. Improvements/Applications: AD is a neurological condition affecting the brain and causing dementia that may affect the mind and memory. The disease indirectly impacts more than 15 million relatives, companions and guardians. The results of the present research are expected to help the specialist in decision making process.

Publication Date
Fri Jan 01 2016
Journal Name
Ieee Access
Towards an Applicability of Current Network Forensics for Cloud Networks: A SWOT Analysis
...Show More Authors

In recent years, the migration of the computational workload to computational clouds has attracted intruders to target and exploit cloud networks internally and externally. The investigation of such hazardous network attacks in the cloud network requires comprehensive network forensics methods (NFM) to identify the source of the attack. However, cloud computing lacks NFM to identify the network attacks that affect various cloud resources by disseminating through cloud networks. In this paper, the study is motivated by the need to find the applicability of current (C-NFMs) for cloud networks of the cloud computing. The applicability is evaluated based on strengths, weaknesses, opportunities, and threats (SWOT) to outlook the cloud network. T

... Show More
View Publication Preview PDF
Scopus (17)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Sat May 16 2009
Journal Name
Journal Of Planner And Development
Quantitative analysis of the economic characteristics of the land transport network
...Show More Authors

Highway network could be considered as a function of the developmental level of the region, that it is representing the sensitive nerve of the economic activity and the corner stone for the implementation of development plans and developing the spatial structure. The main theme of this thesis is to show the characteristics of the regional highway network of Anbar and to determine the most important effective spatial characteristics and the dimension of that effect negatively or positively. Further this thesis tries to draw an imagination for the connection between highway network as a spatial phenomenon and the surrounded natural and human variables within the spatial structure of the region. This thesis aiming also to determine the natu

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Field study of the effect of jet grouting parameters on strength based on tensile and unconfined compressive strength
...Show More Authors
Abstract<p>The improvement of the mechanical soil characteristics of jet grouting technique is very attractive. The jet grouted soil cement columns in soft is a complicated issue because it depends on a number of factors such as, soil nature, mixture, influence among soil and grouting materials, jetting force of nozzle, jet grouting and water flow rate, rotation and lifting speed. This paper discusses the estimation of shear strength parameters of soil-cement column (soilcrete) in soft clayey soil based on the relationships between the unconfined compressive and split tensile strength for the soilcrete and the effect of the jet grouting and water pressure in the values of cohesion and internal f</p> ... Show More
View Publication
Scopus (11)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Sat Jun 30 2018
Journal Name
International Journal Of Medical Research & Health Sciences
Assessment of the Healthy Women by Detection and Determination of Cells in Conventional Pap Stained Cervical Smear Images
...Show More Authors

Introduction: A Pap test can detect pre-cancerous and cancerous cells in the vagina and uterine cervix. Cervical cancer is the easiest gynecologic cancer to be prevented and diagnosed using regular screening tests and follow-up. This study aimed to estimate the cytological changes and the precancerous lesions using Pap smear test and visual inspection of the cervices of Iraqi women, and also to determine the possible relationship of this cancer with patients’ demographic characteristics. Methods: The study included 140 women aged (18-67) years old referred to the National Cancer Research Center (NCRC), Baghdad, Iraq, during the period 2011-2016. Both visual inspections of the uterine cervix and Papanicolaou smear screening were performed

... Show More
Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
A New Model Design for Combating COVID -19 Pandemic Based on SVM and CNN Approaches
...Show More Authors

       In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from      Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (3)
Scopus Crossref
Publication Date
Tue Dec 11 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Disease Patterns and outcomes of Neonatal Admissions at Raparin Pediatric Teaching Hospital in Erbil City
...Show More Authors

Objectives: This study aims to determine the disease’s patterns and outcomes of admission among neonates hospitalized at the neonatal care unit in Erbil City, and using the findings as a baseline for neonate’s morbidity and mortality assessment in the future. Methodology: A retrospective study carried out at neonatal care unit of Raparin pediatric teaching hospital. An instrument for data collection developed by researcher included (age, gender, cause of admission, diagnosis and outcome upon discharge and causes of death). Content validity of the instrument was determined through the use of panel ex

... Show More
View Publication Preview PDF
Publication Date
Thu May 23 2019
Journal Name
The International Journal Of Artificial Organs
Real-time classification of shoulder girdle motions for multifunctional prosthetic hand control: A preliminary study
...Show More Authors

In every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Evaluating the Performance and Behavior of CNN, LSTM, and GRU for Classification and Prediction Tasks
...Show More Authors

     Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Sat Jul 01 2017
Journal Name
Journal Of Construction Engineering And Management
Identification, Quantification, and Classification of Potential Safety Risk for Sustainable Construction in the United States
...Show More Authors

View Publication
Scopus (55)
Crossref (51)
Scopus Clarivate Crossref
Publication Date
Fri Jan 31 2025
Journal Name
Aip Conference Proceedings
Classification of oral cavity cancer using linear discriminant analysis (LDA) and principal component analysis (PCA)
...Show More Authors

View Publication
Crossref (1)
Scopus Crossref