Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the use of Gray Level Co-occurrence Matrix (GLCM) features and DBN classifier provides 98.26% accuracy with the two specific classes were tested. Improvements/Applications: AD is a neurological condition affecting the brain and causing dementia that may affect the mind and memory. The disease indirectly impacts more than 15 million relatives, companions and guardians. The results of the present research are expected to help the specialist in decision making process.
The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Tra
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreNano gamma alumina was prepared by double hydrolysis process using aluminum nitrate nano hydrate and sodium aluminate as an aluminum source, hydroxyle poly acid and CTAB (cetyltrimethylammonium bromide) as templates. Different crystallization temperatures (120, 140, 160, and 180) 0C and calcinations temperatures (500, 550, 600, and 650) 0C were applied. All the batches were prepared at PH equals to 9. XRD diffraction technique and infrared Fourier transform spectroscopy were used to investigate the phase formation and the optical properties of the nano gamma alumina. N2 adsorption-desorption (BET) was used to measure the surface area and pore volume of the prepared nano alumina, the particle size and the
... Show MoreNowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show MoreThe precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences
... Show MoreDisease responses of eight wheat cultivars , Saber Beg. , Abu-Ghraib 3, Mexipak , Tamoz 2,Tamoz 3 , IPA 95 ,IPA 99 and Tahadi which were grown in four different sowing date , 25 th October , 19th September , 14th December and 8 January , to leaf rust disease caused by Puccinia recondita were investigated under natural infection conditions at the experimental farm , College of Agriculture , Abu-Ghraib, during the growing season of 1997-1998.Results of this study revealed that IPA 95, IPA 99 and Tahadi showed moderate resistant reaction, while Tamuz 3 was moderateley susceptable . Abu-Ghraib , Saber Beg, Tamuz 2 and Mexipak showed susceptible yeaction to the causal agent . The first sowing date was not suitable for disease progress in compars
... Show MorePassive optical network (PON) is a point to multipoint, bidirectional, high rate optical network for data communication. Different standards of PONs are being implemented, first of all PON was ATM PON (APON) which evolved in Broadband PON (BPON). The two major types are Ethernet PON (EPON) and Gigabit passive optical network (GPON). PON with these different standards is called xPON. To have an efficient performance for the last two standards of PON, some important issues will considered. In our work we will integrate a network with different queuing models such M/M/1 and M/M/m model. After analyzing IPACT as a DBA scheme for this integrated network, we modulate cycle time, traffic load, throughput, utilization and overall delay
... Show MoreTo determine the relationship between celiac disease and reproductive disorder, twenty two women with recurrent spontaneous abortion (18-35) years have been investigated from the period 2017/11/1 – 2018/2/1 and compared wih twenty two parentally healthy women. All studied groups were carried out to measure antitissue transglutaminase IgA and IgG antibodies by Enzyme linked immunosorbent assay (ELISA) technique, There were a highly significant differences (P < 0.01) in the concentration of anti TtG IgA and IgG Ab compared to control group, while there was non-significant differences (P > 0.05) in the concentration of anti TtG IgA according to the age group and there was a significant difference (P < 0.05) in the concentration of anti TtG I
... Show MoreObjective(s): To determine the quality of life for adults with a chronic obstructive pulmonary disease.
Methodology: A descriptive study was carried out on (80) patients with a chronic obstructive pulmonary disease from
December 2008 through October 2009 with special inclusion criteria (adult paƟents from 18 years and above exclude
the patients who suffer complication related of disease and from psychological problems and other chronic illnesses.
The data were analyzed through the application of descriptive data analysis approach and inferential data approach.
Result: The study indicated that the determination of QoL for COPD depended on the level of effect .The grades
according to R.S are: "high" effect of disease in