Preferred Language
Articles
/
lRfgPo8BVTCNdQwCGGXF
MR Images Classification of Alzheimer's Disease Based on Deep Belief Network Method
...Show More Authors

Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the use of Gray Level Co-occurrence Matrix (GLCM) features and DBN classifier provides 98.26% accuracy with the two specific classes were tested. Improvements/Applications: AD is a neurological condition affecting the brain and causing dementia that may affect the mind and memory. The disease indirectly impacts more than 15 million relatives, companions and guardians. The results of the present research are expected to help the specialist in decision making process.

Publication Date
Wed Mar 31 2021
Journal Name
Electronics
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model
...Show More Authors

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A

... Show More
View Publication
Scopus (42)
Crossref (39)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Inorganic Chemistry Communications
Detection of nitrotyrosine (Alzheimer's agent) by B24N24 nano cluster: A comparative DFT and QTAIM insight
...Show More Authors

A nano-sensor for nitrotyrosine (NT) molecule was found by studying the interactions of NT molecule with new B24N24 nanocages. It was calculated using density functionals in this case. The predicted adsorption mechanisms included physical and chemical adsorption with the adsorption energy of −2.76 to −4.60 and −11.28 to −15.65 kcal mol−1, respectively. The findings show that an NT molecule greatly increases the electrical conductivity of a nanocage by creating electronic noise. Moreover, NT adsorption in the most stable complexes significantly affects the Fermi level and the work function. This means the B24N24 nanocage can detect NT as a Φ–type sensor. The recovery time was determined to be 0.3 s. The sensitivity of pure BN na

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Enhancement Ear-based Biometric System Using a Modified AdaBoost Method
...Show More Authors

          The primary objective of this paper is to improve a biometric authentication and classification model using the ear as a distinct part of the face since it is unchanged with time and unaffected by facial expressions. The proposed model is a new scenario for enhancing ear recognition accuracy via modifying the AdaBoost algorithm to optimize adaptive learning. To overcome the limitation of image illumination, occlusion, and problems of image registration, the Scale-invariant feature transform technique was used to extract features. Various consecutive phases were used to improve classification accuracy. These phases are image acquisition, preprocessing, filtering, smoothing, and feature extraction. To assess the proposed

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
Comparison between Different Data Image Compression Techniques Applied on SAR Images
...Show More Authors

In this paper, image compression technique is presented based on the Zonal transform method. The DCT, Walsh, and Hadamard transform techniques are also implements. These different transforms are applied on SAR images using Different block size. The effects of implementing these different transforms are investigated. The main shortcoming associated with this radar imagery system is the presence of the speckle noise, which affected the compression results.

View Publication Preview PDF
Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Science
Effect of Atmospheric Mixing on Spectral Reflectivity in Sentinel Images of Baghdad Province
...Show More Authors

The lowest layer of the atmosphere is called the atmospheric mixed layer, characterized by small-scale, irregular air motions defined by winds that change in speed and direction. Aerosol radiative effects impact the atmospheric boundary layer (ABL), which holds most aerosols in the lower atmosphere. Aerosol absorption and scattering both lower the quantity of solar energy that reaches the ground, which has an impact on the spectral signature of the land coverings. In this study, 51 locations in downtown Baghdad were chosen for four different types of land cover (water bodies, farms, open areas, and residential areas) for Sentinel 2 satellite imagery, and the time the pictures were taken was 8:00 am ( 22 March, 22 June, 20 September,

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Sun Sep 06 2020
Journal Name
European Journal Of Dental Education
Evaluation of technology‐based learning by dental students during the pandemic outbreak of coronavirus disease 2019
...Show More Authors

View Publication
Crossref (53)
Crossref
Publication Date
Fri Jan 15 2021
Journal Name
Palarch's Journal Of Archaeology Of Egypt/egyptology
Belief and practice in the teaching of pronunciation in the Iraqi EFL context
...Show More Authors

IH Abdul-Abbas, QJ Rashid, M RasimYounus, PalArch's Journal of Archaeology of Egypt/Egyptology, 2021 - Cited by 9

View Publication Preview PDF
Publication Date
Sun Dec 22 2019
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
The Belief about Medicines among a Sample of Iraqi Patients with Rheumatoid Arthritis
...Show More Authors

Rheumatoid arthritis is a chronic, progressive, inflammatory autoimmune disease of unidentified etiology, associated with articular, extra-articular and systemic manifestation that require long-standing treatment. Taking patient’s beliefs about the prescribed medication in consideration had been shown to be an essential factor that affects adherence of the patient in whom having positive beliefs is an essential for better adherence. The purpose of the current study was to measure beliefs about medicines among a sample of Iraqi patients with Rheumatoid arthritis and to determine possible association between this belief and some patient-certain factors. This study is a cross-sectional study carried out on 250 already diagnosed rheumatoid

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (12)
Scopus Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (32)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Fri Oct 23 2020
Journal Name
Palarch’s Journal Of Archaeology Of Egypt/egyptology
A Multimodal Discourse Analysis of Visual Images in UNHCR Reports on Displaced Iraqis
...Show More Authors

The advent of UNHCR reports has given rise to the uniqueness of its distinctive way of image representation and using semiotic features. So, there are a lot of researches that have investigated UNHCR reports, but no research has examined images in UNHCR reports of displaced Iraqis from a multimodal discourse perspective. The present study suggests that the images are, like language, rich in many potential meanings and are governed by clearly visual grammar structures that can be employed to decode these multiple meanings. Seven images are examined in terms of their representational, interactional and compositional aspects. Depending on the results, this study concludes that the findings support the visual grammar theory and highlight the va

... Show More
View Publication Preview PDF