Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the use of Gray Level Co-occurrence Matrix (GLCM) features and DBN classifier provides 98.26% accuracy with the two specific classes were tested. Improvements/Applications: AD is a neurological condition affecting the brain and causing dementia that may affect the mind and memory. The disease indirectly impacts more than 15 million relatives, companions and guardians. The results of the present research are expected to help the specialist in decision making process.
Protecting information sent through insecure internet channels is a significant challenge facing researchers. In this paper, we present a novel method for image data encryption that combines chaotic maps with linear feedback shift registers in two stages. In the first stage, the image is divided into two parts. Then, the locations of the pixels of each part are redistributed through the random numbers key, which is generated using linear feedback shift registers. The second stage includes segmenting the image into the three primary colors red, green, and blue (RGB); then, the data for each color is encrypted through one of three keys that are generated using three-dimensional chaotic maps. Many statistical tests (entropy, peak signa
... Show MoreThe aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
In this paper, a simulation of the electrical performance for Pentacene-based top-contact bottom-gate (TCBG) Organic Field-Effect Transistors (OFET) model with Polymethyl methacrylate (PMMA) and silicon nitride (Si3N4) as gate dielectrics was studied. The effects of gate dielectrics thickness on the device performance were investigated. The thickness of the two gate dielectric materials was in the range of 100-200nm to maintain a large current density and stable performance. MATLAB simulation demonstrated for model simulation results in terms of output and transfer characteristics for drain current and the transconductance. The layer thickness of 200nm may result in gate leakage current points to the requirement of optimizing the t
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreObjective: Detection the presumptive prevalence of silent celiac disease in patients with type 1 diabetes mellitus with determination of which gender more likely to be affected.
Methods: One hundred twenty asymptomatic patients [75 male , 45 female] with type 1 diabetes mellitus with mean age ± SD of 11.25 ± 2.85 year where included in the study . All subjects were serologically screened for the presence of anti-tissue transglutaminase IgA antibodies (anti-tTG antibodies) by Enzyme-Linked Immunosorbent Assay (ELISA) & total IgA was also measured for all using radial immunodiffusion plate . Anti-tissue transglutaminase IgG was selectively done for patients who were expressing negative anti-tissue transglutaminase IgA with low tot
Objective: Detection the presumptive prevalence of
silent celiac disease in patients with type 1 diabetes
mellitus with determination of which gender more
likely to be affected.
Methods: One hundred twenty asymptomatic patients
[75 male , 45 female] with type 1 diabetes mellitus
with mean age ± SD of 11.25 ± 2.85 year where
included in the study . All subjects were serologically
screened for the presence of anti-tissue transglutaminase
IgA antibodies (anti-tTG antibodies) by Enzyme-
Linked Immunosorbent Assay (ELISA) & total IgA
was also measured for all using radial
immunodiffusion plate . Anti-tissue transglutaminase
IgG was selectively done for patients who were
expressing negative anti-
In this research, the water quality of the potable water network in
Al-Shuala Baghdad city were evaluated and compare them with the
Iraqi standards (IQS) for drinking water and World Health
Organization standards (WHO), then water quality index (WQI) were
calculator: pH, heavy metals (lead, cadmium and iron), chlorides,
total hardness, turbidity, dissolved oxygen, total dissolved solid and
electrical conductivity. Water samples are collected weekly during
the period from February 2015 to April 2015 from ten sites. Results
show that the chlorides, total dissolved solid and electrical
conductivity less than acceptable limit of standards, but total
hardness and heavy metals in some samples higher than acceptabl
The present study develops an artificial neural network (ANN) to model an analysis and a simulation of the correlation between the average corrosion rate carbon steel and the effective parameter Reynolds number (Re), water concentration (Wc) % temperature (T o) with constant of PH 7 . The water, produced fom oil in Kirkuk oil field in Iraq from well no. k184-Depth2200ft., has been used as a corrosive media and specimen area (400 mm2) for the materials that were used as low carbon steel pipe. The pipes are supplied by Doura Refinery . The used flow system is all made of Q.V.F glass, and the circulation of the two –phase (liquid – liquid ) is affected using a Q.V.F pump .The input parameters of the model consists of Reynolds number , w
... Show More