Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the use of Gray Level Co-occurrence Matrix (GLCM) features and DBN classifier provides 98.26% accuracy with the two specific classes were tested. Improvements/Applications: AD is a neurological condition affecting the brain and causing dementia that may affect the mind and memory. The disease indirectly impacts more than 15 million relatives, companions and guardians. The results of the present research are expected to help the specialist in decision making process.
The extracting of personal sprite from the whole image faced many problems in separating the sprite edge from the unneeded parts, some image software try to automate this process, but usually they couldn't find the edge or have false result. In this paper, the authors have made an enhancement on the use of Canny edge detection to locate the sprite from the whole image by adding some enhancement steps by using MATLAB. Moreover, remove all the non-relevant information from the image by selecting only the sprite and place it in a transparent background. The results of comparing the Canny edge detection with the proposed method shows improvement in the edge detection.
A coin has two sides. Steganography although conceals the existence of a message but is not completely secure. It is not meant to supersede cryptography but to supplement it. The main goal of this method is to minimize the number of LSBs that are changed when substituting them with the bits of characters in the secret message. This will lead to decrease the distortion (noise) that is occurred in the pixels of the stego-image and as a result increase the immunity of the stego-image against the visual attack. The experiment shows that the proposed method gives good enhancement to the steganoraphy technique and there is no difference between the cover-image and the stego-image that can be seen by the human vision system (HVS), so this method c
... Show MoreGenome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and id
... Show MoreIn this work, wide band range photo detector operating in UV, Visible and IR was fabricated using carbon nanotubes (MWCNTs, SWCNTs) decorated with silver nanoparticles (Ag NPs). Silicon was used as a substrate to deposited CNTs/Ag NPs by the drop casting technique. Polyamide nylon polymer was used to coat CNTs/Ag NPs to enhance the photo-response of the detector. The electro-exploding wire technology was used to synthesize Ag NPs. Good dispersion of silver NPs achieved by a simple chemistry process on the surface of CNTs. The optical, structure and electrical characteristic of CNTs decorated with Ag NPs were characterized by X-Ray diffraction and Field Emission Scanning Electron Microscopy. X-ray diffra
... Show MoreIn this paper new methods were presented based on technique of differences which is the difference- based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially linear model. As for the nonlinear part represented by the nonparametric function, it was estimated using Nadaraya Watson smoother. The partially linear model was compared using these proposed methods with other estimators based on differencing technique through the MSE comparison criterion in simulation study.
The aim of this research is to develop qualitative workouts based on certain sensory perceptions for the development of offensive basketball abilities and to determine their impact on female pupils. Several findings, based on the au-thor's extensive expertise instructing basketball materials and our closeness to the sample, revealed deficits in some sensory perceptions “in the game of basketball”, which impair the accuracy of passing the ball to the best team-mate. It also affects the pace of dribbling and the difficulty of selecting the op-timal moment and distance to fire. Therefore, the researcher designs qualita-tive activities based on many sensory experiences, including distance, speed, force, and direction shift. In addition, the
... Show MoreIn this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of Bayes est
... Show MoreIn this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of B
... Show More