Preferred Language
Articles
/
lRe1xJIBVTCNdQwCBr8X
Machine Learning and Vision: Advancing the Frontiers of Diabetic Cataract Management

Clarivate Crossref
View Publication
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Detection of Suicidal Ideation on Twitter using Machine Learning & Ensemble Approaches

Suicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o

... Show More
Scopus (25)
Crossref (16)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Ecological Engineering
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Mon May 06 2024
Journal Name
Journal Of Ecological Engineering
Using Machine Learning Algorithms to Predict the Sweetness of Bananas at Different Drying Times

The consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying

... Show More
Scopus (1)
Crossref (2)
Scopus Crossref
Preview PDF
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Scoping Review of Machine Learning Techniques and Their Utilisation in Predicting Heart Diseases

Heart diseases are diverse, common, and dangerous diseases that affect the heart's function. They appear as a result of genetic factors or unhealthy practices. Furthermore, they are the leading cause of mortalities in the world. Cardiovascular diseases seriously concern the health and activity of the heart by narrowing the arteries and reducing the amount of blood received by the heart, which leads to high blood pressure and high cholesterol. In addition, healthcare workers and physicians need intelligent technologies that help them analyze and predict based on patients’ data for early detection of heart diseases to find the appropriate treatment for them because these diseases appear on the patient without pain or noticeable symptoms,

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Investigation of the Anti-cataract and Antioxidant Activities of Cnidoscolus aconitifolius Leaves Extract In vitro

Background: Cataract is a major cause of visual impairment and blindness around the world. This study evaluated the in vitro antioxidant and anti-cataract activities of Cnidoscolus aconitifolius leaves extract and fractions. Antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiozoline-6-sulfonic acid) (ABTS), total reducing power, and hydrogen peroxide scavenging assays. Anti-cataract potential was evaluated in vitro using goat lenses divided into eight groups of different treatments and incubated in artificial aqueous humor at 37 °C for 72 hours. Glucose-induced opacity in the lenses was observed and biochemical indices quantified (cata

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jun 30 2009
Journal Name
Al-kindy College Medical Journal
The impact of advancing age on total serum IgE in asthmatic patient
 

Abstract

The current study was conducted to assess the effect of advancing age on total serum IgE level in asthmatic patients. To this purpose, 90 asthmatic patients and 30 healthy individuals ( control group ) were enrolled. Asthmatic patients were categorized into four groups. Group A consisted of asthmatic patients (9) whose age was more than 20 and up to 30 y. Group B contained asthmatics (13) of age more than 30 and up to 40 y. Group C comprised those (23) of more than 40 and up to 50 y. Group D consisted asthmatic patients (45) of age more than 50 y. Total serum IgE level significantly changed in group D patients when compared with those of

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Machine Learning Based Crop Yield Prediction Model in Rajasthan Region of India

     The present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mea

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
A New Efficient Hybrid Approach for Machine Learning-Based Firefly Optimization

     Optimization is the task of minimizing or maximizing an objective function f(x) parameterized by x. A series of effective numerical optimization methods have become popular for improving the performance and efficiency of other methods characterized by high-quality solutions and high convergence speed. In recent years, there are a lot of interest in hybrid metaheuristics, where more than one method is ideally combined into one new method that has the ability to solve many problems rapidly and efficiently. The basic concept of the proposed method is based on the addition of the acceleration part of the Gravity Search Algorithm (GSA) model in the Firefly Algorithm (FA) model and creating new individuals. Some stan

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF