The amine group (NH2) and the carboxyl group (COOH-) are the fundamental components of amino acids. They regulate several essential physiological functions of organisms and are found in all forms of life, including humans, plants, and microorganisms. Furthermore, they serve as vital energy sources and also act as neurotransmitters. An analysis of the kidneys of Pterocles alchata, an Iraqi Pin-tailed sandgrouse, revealed the presence of 18 specific amino acids. The data indicate that there were no significant differences in the total amounts of amino acids among the three renal lobes. The concentrations in the anterior, middle, and posterior lobes were measured to be 14.154 ą97. 273, 12.437 ą87. 255, and 11.882 ą88. 157 correspondingly, with a significance level of p≤ 0.05. There were considerable variations in the amounts of amino acids among different areas of the kidney. A glutamine, serine, and asparagine surplus was most pronounced in the kidney lobes. Glutamate proportions were 14.38 ą226. 661 in the back lobe, 22.9 ą231. 929 in the middle lobe, and 27.74 ą261. 852 in the front lobe. The statistical significance of these changes was determined using a significance level of p≤ 0.05.. Applying a probability threshold of p≤ 0.01, the serine concentrations in the kidney lobes were measured as 29.59 ą226. 65, 17.74 ą202. 183, and 7.71 ą199. 840 in the anterior, middle, and posterior lobes, respectively. The concentration of the amino acid asparagine (Asn) in the anterior lobe was 12.61 ą153. 952, in the middle lobe it was 7.47 ą135. 278, and in the posterior lobe it was 10.23 ą128. 885. These concentrations were observed at a …
In the present work the nuclear structure of even-even
Ba(A=130-136, Z=56) isotopes was studied using (IBM-1). The reduced matrix element of magnetic dipole moment (11 II f(Ml) II/,) and the magnetic dipole transitions probability B(M 1) were calculated
for one and two bodies of even-even Ba(A=lJ0-136, Z=56). A good
agreement had been found of present with available experimental data.
The current study was to examine the reliability and effectiveness of using most abundant, inexpensive waste in the form of scrap raw zero valent aluminum ZVAI and zero valent iron ZVI for the capture, retard, and removal of one of the most serious and hazardous heavy metals cadmium dissolved in water. Batch tests were conducted to examine contact time (0-250) min, sorbent dose (0.25-1 g ZVAI/100 mL and 2-8 g ZVI/100 mL), initial pH (3-6), pollutant concentration of 50mg/L initially, and speed of agitation (0-250) rpm . Maximum contaminant removal efficiency corresponding to (90 %) for cadmium at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed wer
... Show MoreNew Schiff base and their Mn(II),Co(II),Ni(II), Cu(II) and Hg(II) complexes formed by the condensation of O-phathaldehyde and ethylene diamine (2:1) to give ligand (L1) in the first step ,then the ligand (L1) with 2- aminophenol (1:2) to give ligand (L2) were prepared by classic addition through microwave method . These compounds (Ligands and complexes) have been diagnosed electronic spectra, FT-IR, 1H-&13C-NMR (only ligand), magnetic susceptibility, elemental microanalysis and molar conductance measurements. Analytical values displayed that all the complexes appeared (metal: ligand) (1:1) ratio with the six chelation. All the compounds appear a high activity versus four types of bacteria suc
... Show MoreIn the present study, a novel ligand (L) made of 2-hydroxynaphthaldehyde and 3-hydrazone-1,3-dihydro-indole-2-one(3-[(3-hydroxynaphthalen-2-yl-ethylidene)-hydrazono]-1,3-dihydro-indol-2-one). The ligand was characterized by FTIR, UV-vis, mass, 1H-NMR, 13C-NMR, and CHN elemental analysis. New complexes of this ligand were created by treating methanol and a drop of DMF solution of the produced ligand with the hydrated metal salts of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) in a molar ratio of 2:1 (L:M). As a result, complexes have been emerged and identified FTIR, UV-vis, C.H.N., chloride-containing, molar conductance, magnetic susceptibility, and atomic absorption. The characterization result for each complex indicated complexes wi
... Show MoreThe reaction of [Benzoyl hydrazine] with [Diphenyl mono oxime] and Glacial acetic acid was carried out in methanol gave a new tridentate ligand [Benzoic acid (2-hydroxyimino- 1, 2-diphyneylethylidene) - hydrazide]. This ligand was reacted with some metal ions (Fe(II), Co(II), Ni(II), and Cu(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(L)Cl2.H2O], where M= Fe(11), Co(11), Ni(11) and Cu(11). All compounds were characterized by spectroscopic methods (I.R, UV-Vis), elemental microanalysis (C.H.N), atomic absorption, magnetic susceptibility, and conductivity measurements. From the obtained data the proposed molecular structures were suggested for the complexes of Fe
... Show MoreThis work involves synthesis of some new heterocyclic compounds including 1, 3-diazetine. The new Schiff bases [VI] ad derived from 3-((5-hydrazinyl-4-phenyl-4H-1, 2, 4-triazol-3-yl) methyl)-1H-indole [V] which was synthesized by refluxing 5-((1H-indol-3-yl) methyl)-4-phenyl-4H-1, 2, 4-triazole-3-thiol [IV] with hydrazine hydrate in absolute ethanol and this amino compound [V] condensation with different aromatic aldehydes in absolute ethanol to yielded a new Schiff bases [VI] ad. N-acyl compounds [VII] ad were synthesized by addition reaction of acetyl chloride to imine group of Schiff bases in dry benzene. The new diazetine derivatives [VIII] ad synthesized by the reaction of N-acyl compounds [VII] ad with sodium azide in dimethylformamid
... Show MoreIn this study , the effect of an organic compound prepared as derivative of oxazepine tested on the activities of aspartate amino trasferase (AST) and alanin amino transferase (ALT). The kinetic study of such enzymes is in the presence of oxazepine derivative. The results revealed that the organic compound is a non competitive inhibitor for both enzymes. The Km value for AST is 1.3 × 10-3 M and Vmax for the uninhibited is 200 U/mL and for the inhibited is 111.1 U/mL while Km value for ALT is 2.5 × 10-3 M and Vmax are 89.66 U/mL and 56.77 U/mL for the uninhibited and inhibited enzyme respectively.