Big data of different types, such as texts and images, are rapidly generated from the internet and other applications. Dealing with this data using traditional methods is not practical since it is available in various sizes, types, and processing speed requirements. Therefore, data analytics has become an important tool because only meaningful information is analyzed and extracted, which makes it essential for big data applications to analyze and extract useful information. This paper presents several innovative methods that use data analytics techniques to improve the analysis process and data management. Furthermore, this paper discusses how the revolution of data analytics based on artificial intelligence algorithms might provide improvements for many applications. In addition, critical challenges and research issues were provided based on published paper limitations to help researchers distinguish between various analytics techniques to develop highly consistent, logical, and information-rich analyses based on valuable features. Furthermore, the findings of this paper may be used to identify the best methods in each sector used in these publications, assist future researchers in their studies for more systematic and comprehensive analysis and identify areas for developing a unique or hybrid technique for data analysis.
Data compression offers an attractive approach to reducing communication costs using available bandwidth effectively. It makes sense to pursue research on developing algorithms that can most effectively use available network. It is also important to consider the security aspect of the data being transmitted is vulnerable to attacks. The basic aim of this work is to develop a module for combining the operation of compression and encryption on the same set of data to perform these two operations simultaneously. This is achieved through embedding encryption into compression algorithms since both cryptographic ciphers and entropy coders bear certain resemblance in the sense of secrecy. First in the secure compression module, the given text is p
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show Moreأثبتت الشبكات المحددة بالبرمجيات (SDN) تفوقها في معالجة مشاكل الشبكة العادية مثل قابلية التوسع وخفة الحركة والأمن. تأتي هذه الميزة من SDN بسبب فصل مستوى التحكم عن مستوى البيانات. على الرغم من وجود العديد من الأوراق والدراسات التي تركز على إدارة SDN، والرصد، والتحكم، وتحسين QoS، إلا أن القليل منها يركز على تقديم ما يستخدمونه لتوليد حركة المرور وقياس أداء الشبكة. كما أن المؤلفات تفتقر إلى مقارنات بين الأدوات والأ
... Show MoreThe distribution of the intensity of the comet Ison C/2013 is studied by taking its histogram. This distribution reveals four distinct regions that related to the background, tail, coma and nucleus. One dimensional temperature distribution fitting is achieved by using two mathematical equations that related to the coordinate of the center of the comet. The quiver plot of the gradient of the comet shows very clearly that arrows headed towards the maximum intensity of the comet.
Finding orthogonal matrices in different sizes is very complex and important because it can be used in different applications like image processing and communications (eg CDMA and OFDM). In this paper we introduce a new method to find orthogonal matrices by using tensor products between two or more orthogonal matrices of real and imaginary numbers with applying it in images and communication signals processing. The output matrices will be orthogonal matrices too and the processing by our new method is very easy compared to other classical methods those use basic proofs. The results are normal and acceptable in communication signals and images but it needs more research works.
Today, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.
Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file. In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus,
... Show MoreThis paper addresses the nature of Spatial Data Infrastructure (SDI), considered as one of the most important concepts to ensure effective functioning in a modern society. It comprises a set of continually developing methods and procedures providing the geospatial base supporting a country’s governmental, environmental, economic, and social activities. In general, the SDI framework consists of the integration of various elements including standards, policies, networks, data, and end users and application areas. The transformation of previously paper-based map data into a digital format, the emergence of GIS, and the Internet and a host of online applications (e.g., environmental impact analysis, navigation, applications of VGI dat
... Show MoreSummary First: The importance of the study and the need for it: The society is composed of an integrated unit of groups and institutions that seek to achieve a specific goal within a system of salary, and the family remains the most influential institutions on the individual and the unity of society, with the roles and responsibilities of the individual and society, and through the continuation and strength of other social organizations derive their ability On the other hand, any break-up in the institution of the family is reflected negatively on the cohesion of society and its interdependence, and the causes of this disintegration vary from society to another, but family problems remain the main factor in obtaining it. Second: Study Ob
... Show More