Big data of different types, such as texts and images, are rapidly generated from the internet and other applications. Dealing with this data using traditional methods is not practical since it is available in various sizes, types, and processing speed requirements. Therefore, data analytics has become an important tool because only meaningful information is analyzed and extracted, which makes it essential for big data applications to analyze and extract useful information. This paper presents several innovative methods that use data analytics techniques to improve the analysis process and data management. Furthermore, this paper discusses how the revolution of data analytics based on artificial intelligence algorithms might provide improvements for many applications. In addition, critical challenges and research issues were provided based on published paper limitations to help researchers distinguish between various analytics techniques to develop highly consistent, logical, and information-rich analyses based on valuable features. Furthermore, the findings of this paper may be used to identify the best methods in each sector used in these publications, assist future researchers in their studies for more systematic and comprehensive analysis and identify areas for developing a unique or hybrid technique for data analysis.
Scams remain among top cybercrime incidents happening around the world. Individuals with high susceptibility to persuasion are considered as risk-takers and prone to be scam victims. Unfortunately, limited number of research is done to investigate the relationship between appeal techniques and individuals' personality thus hindering a proper and effective campaigns that could help to raise awareness against scam. In this study, the impact of fear and rational appeal were examined as well as to identify suitable approach for individuals with high susceptibility to persuasion. To evaluate the approach, pretest and posttest surveys with 3 separate controlled laboratory experiments were conducted. This study found that rational appeal treatm
... Show MoreSoil fertility is a crucial factor in measuring soil quality, it indicates the extent to which soil can support plant life. Soil fertility is measured by the amount of macro and micronutrients, pH, etc. Soil nutrients are depleted after each harvest and therefore must be added. To maintain soil nutrient levels, fertilizer is added to the soil. Adding fertilizer in the precise amount is a matter of great importance because excess or insufficient application can harm plant life and reduce productivity. The use of modern technology is a solution to this problem. Although automated techniques for sowing, weeding, crop harvesting, etc. have been proposed and implemented, none of the techniques are aimed to maintaining soil fertility. The study a
... Show MoreDigital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show MoreSummary First: The importance of the study and the need for it: The society is composed of an integrated unit of groups and institutions that seek to achieve a specific goal within a system of salary, and the family remains the most influential institutions on the individual and the unity of society, with the roles and responsibilities of the individual and society, and through the continuation and strength of other social organizations derive their ability On the other hand, any break-up in the institution of the family is reflected negatively on the cohesion of society and its interdependence, and the causes of this disintegration vary from society to another, but family problems remain the main factor in obtaining it. Second: Study Ob
... Show MoreFinding orthogonal matrices in different sizes is very complex and important because it can be used in different applications like image processing and communications (eg CDMA and OFDM). In this paper we introduce a new method to find orthogonal matrices by using tensor products between two or more orthogonal matrices of real and imaginary numbers with applying it in images and communication signals processing. The output matrices will be orthogonal matrices too and the processing by our new method is very easy compared to other classical methods those use basic proofs. The results are normal and acceptable in communication signals and images but it needs more research works.
Today, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.
The distribution of the intensity of the comet Ison C/2013 is studied by taking its histogram. This distribution reveals four distinct regions that related to the background, tail, coma and nucleus. One dimensional temperature distribution fitting is achieved by using two mathematical equations that related to the coordinate of the center of the comet. The quiver plot of the gradient of the comet shows very clearly that arrows headed towards the maximum intensity of the comet.
Most frequently used models for modeling and forecasting periodic climatic time series do not have the capability of handling periodic variability that characterizes it. In this paper, the Fourier Autoregressive model with abilities to analyze periodic variability is implemented. From the results, FAR(1), FAR(2) and FAR(2) models were chosen based on Periodic Autocorrelation function (PeACF) and Periodic Partial Autocorrelation function (PePACF). The coefficients of the tentative model were estimated using a Discrete Fourier transform estimation method. FAR(1) models were chosen as the optimal model based on the smallest values of Periodic Akaike (PAIC) and Bayesian Information criteria (PBIC). The residual of the fitted models was diagn
... Show More