High-volume traffic with ultra-heavy axle loads combined with extremely hot weather conditions increases the propagation of rutting in flexible pavement road networks. Several studies suggested using nanomaterials in asphalt modification to delay the deterioration of asphalt pavement. The current work aims to improve the resistance of hot mix asphalt (HMA) to rutting by incorporating Nano Silica (NS) in specific concentrations. NS was blended into asphalt mixtures in concentrations of 2, 4, and 6% by weight of the binder. The behavior of asphalt mixtures subjected to aging was investigated at different stages (short-term and long-term aging). The performance characteristics of the asphalt mixtures were evaluated using the Marshall stability, flow, and wheel tracking tests. Field Emission Scanning Electron Microscopy (FESEM) was utilized to understand the microstructure changes of modified asphalt and estimate the dispersion of NS within the asphalt. The results revealed that using NS–asphalt mixtures as a surface layer in paving construction improved pavement performance by increasing stability, volumetric characteristics, and rutting resistance before and after aging. The FESEM images showed adequate dispersion of NS particles in the mixture. Results indicated that adding 4% of NS to asphalt mixtures effectively enhanced the pavement’s performance and rutting resistance. Doi: 10.28991/CEJ-SP2023-09-01 Full Text: PDF
The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreBackground: techniques of image analysis have been used extensively to minimize interobserver variation of immunohistochemical scoring, yet; image acquisition procedures are often demanding, expensive and laborious. This study aims to assess the validity of image analysis to predict human observer’s score with a simplified image acquisition technique. Materials and methods: formalin fixed- paraffin embedded tissue sections for ameloblastomas and basal cell carcinomas were immunohistochemically stained with monoclonal antibodies to MMP-2 and MMP-9. The extent of antibody positivity was quantified using Imagej® based application on low power photomicrographs obtained with a conventional camera. Results of the software were employed
... Show MoreMachine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims
... Show MoreIn this study, chemical oxidation was employed for the synthesis of polypyrrole (PPy) nanofiber. Furthermore, PPy has been subjected to treatment using nanoparticles of neodymium oxide (Nd2O3), which were produced and added in a certain ratio. The inquiry centered on the structural characteristics of the blend of polypyrrole and neodymium oxide after their combination. The investigation utilises X-ray diffraction (XRD), FTIR, and Field Emission Scanning Electron Microscopy (FE-SEM) for PPy, 10%, 30%, and 50% by volume of Nd2O3. According to the electrochemical tests, it has been noted that the nanocomposites exhibit a substantial amount of pseudocapacitive activity.
Zinc oxide nanoparticles sample is prepared by the precipitation method. This method involves using zinc nitrate and urea in aqueous solution, then (AgNO3) Solution with different concentrations is added. The obtained precipitated compound is structurally characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). The average particle size of nanoparticles is around 28nm in pure, the average particle size reaches 26nm with adding AgNO3 (0.05g in100ml =0.002 M) (0.1g in100ml=0.0058M), AgNO3 (0.2g in 100ml=0.01M) was 25nm. The FTIR result shows the existence of -CO, -CO2, -OH, and -NO2- groups in sample and oxides (ZnO, Ag2O).and used an
... Show MoreAb – initio density function theory (DFT) calculations coupled with Large Unit Cell (LUC) method were carried out to evaluate the electronic structure properties of III-V zinc blend (GaAs). The nano – scale that have dimension (1.56-2.04)nm. The Gaussian 03 computational packages has been employed through out this study to compute the electronic properties include lattice constant, energy gap, valence and conduction band width, total energy, cohesive energy and density of state etc. Results show that the total energy and energy gap are decreasing with increase the size of nano crystal . Results revealed that electronic properties converge to some limit as the size of LUC increase .
A thin film of (SnSe) and SnSe:Cu with various Cu ratio (0,3,5 and 7)% have been prepared by thermal evaporation technique with thickness 400±20 nm on glass substrate at (R.T). The effect of Cu dopants concentration on the structural, morphological, optical and electrical properties of (SnSe) Nano crystalline thin films was explored by using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), UV–Vis absorption spectroscopy and Hall Effect measurement respectively. X-ray diffraction analysis reveal the polycrystalline nature of the all films deposited with orthorhombic structure which possess a preferred orientation along the (111) plane. The crystalline sizes o
... Show More