Preferred Language
Articles
/
lIafrYYBIXToZYALDKPD
Experimental and Numerical Investigations of Composite Concrete–Steel Plate Shear Walls Subjected to Axial Load
...Show More Authors

This research is presented experimental and numerical investigations of composite concrete-steel plate shear walls under axial loads to predicate the effect of both concrete compressive strength and aspect ratio of the wall on the axial capacity, lateral displacement and axial shortening of the walls. The experimental program includes casting and testing two groups of walls with various aspect ratios. The first group with aspect ratio H/L=1.667 and the second group with aspect ratio H/L=2. Each group consists of three composite concrete -steel plate wall with three targets of cube compressive strength of values 39, 54.75 and 63.3 MPa. The tests result obtained that the increase in concrete compressive strength results in increasing the ultimate axial load capacity of the wall. Thus, the failure load, the corresponding lateral displacement and the axial shortening increased by increasing the compressive strength and the rate of increase  in failure load of the tested walls  was about (34.5% , 23.1%) as compressive strength increased from 39 to 63.3 MPa for case of composite wall  with aspect ratio H/L=1.667 and  H/L=2, respectively. The effect of increasing aspect ratio on the axial load capacity, lateral displacement and axial shortening of the walls was also studied in this study. Compared the main performance characteristic of the testing walls, it can be indicated that the walls with aspect ratio equal to (2) failed under lower axial loads as compared with walls with aspect ratio equal to 1.667 ratios by about (5.8, 12, 15.6 %) at compressive strength (39, 54.75, 63.3 MPa), respectively and experienced large flexural deformations. The mode of failure of all walls was characterized by buckling of steel plates as well as cracking and crushing of concrete in the most compressive zone. Nonlinear three-dimensional finite element analysis is also used to evaluate the performance of the composite wall, by using ABAQUS computer Program (version 6.13). Finite element results were compared with experimental results. The comparison shows good accuracy.

Scopus Clarivate Crossref
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Evaluation the behavior of Ring Footing on Gypseous Soil Subjected to Eccentric and Inclined Loads
...Show More Authors

An extensive program of laboratory testing was conducted on ring footing rested on gypseous soil brought from the north of Iraq (Salah El-Deen governorate) with a gypsum content of 59%. There are limited researches available, and even fewer have been done experimentally to understand how to ring footings behave; almost all the previous works only concern the behavior of ring footing under vertical loads, Moreover, relatively few studies have examined the impact of eccentric load and inclined load on such footing. In this study, a series of tests, including dry and wet tests, were carried out using a steel container (600×600×600) mm, metal ring footing (100 mm outer diameter and 40 mm inner diameter) was placed in the m

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 07 2022
Journal Name
Materials
Impact Behavior of Composite Reinforced Concrete Beams with Pultruded I-GFRP Beam
...Show More Authors

Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Engineering
Flexural Behavior of Reinforced Concrete Beams Reinforced with 3D-Textile Composite Fiber
...Show More Authors

Normal concrete is weak against tensile strength, has low ductility, and also insignificant resistance to cracking. The addition of diverse types of fibers at specific proportions can enhance the mechanical properties as well as the durability of concrete. Discrete fiber commonly used, has many disadvantages such as balling the fiber, randomly distribution, and limitation of the Vf ratio used. Based on this vision, a new technic was discovered enhancing concrete by textile-fiber to avoid all the problems mentioned above. The main idea of this paper is the investigation of the mechanical properties of SCC, and SCM that cast with 3D AR-glass fabric having two different thicknesses (6, 10 mm), and different layers (1,2 laye

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 07 2022
Journal Name
Materials
Impact Behavior of Composite Reinforced Concrete Beams with Pultruded I-GFRP Beam
...Show More Authors

The present study experimentally and numerically investigated the impact behavior of composite reinforced concrete (RC) beams with the pultruded I-GFRP and I-steel beams. Eight specimens of two groups were cast in different configurations. The first group consisted of four specimens and was tested under static load to provide reference results for the second group. The four specimens in the second group were tested first under impact loading and then static loading to determine the residual static strengths of the impacted specimens. The test variables considered the type of encased I-section (steel and GFRP), presence of shear connectors, and drop height during impact tests. A mass of 42.5 kg was dropped on the top surface at the m

... Show More
View Publication
Scopus (21)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Tue Jan 09 2024
Journal Name
Fibers
Flexural Behavior of Pultruded GFRP–Concrete Composite Beams Strengthened with GFRP Stiffeners
...Show More Authors

The utilization and incorporation of glass fiber-reinforced plastics (GFRP) in structural applications and architectural constructions are progressively gaining prominence. Therefore, this paper experimentally and numerically investigates the use of GFRP I-beams in conjunction with concrete slabs to form composite beams. The experimental design incorporated 2600 mm long GFRP I-beams which were connected compositely to concrete slabs with a 500 mm width and 80 mm thickness. The concrete slabs are categorized into two groups: concrete slabs cast using normal-strength concrete (NSC), and concrete slabs prepared using high-strength concrete (HSC). Various parameters like the type of concrete (normal and high-strength concrete), type of

... Show More
View Publication
Scopus (15)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Sun Mar 03 2024
Journal Name
Buildings
Reduced Volume Approach to Evaluate Biaxial Bubbled Slabs’ Resistance to Punching Shear
...Show More Authors

The bubbled slab, a type of reinforced concrete (RC) slab with plastic voids, is an innovative design that employs a biaxial distribution of voiding formers within the slab to reduce the slab’s self-weight while preserving a load-carrying capacity that is approximately comparable to that of solid slabs. This paper presents a new approach for figuring out the effective critical shear perimeter of voided slabs using the reduced-volume concept of concrete. This approach aims to reduce the coefficient of variation of the current design standards, namely the ACI 318-19 and Eurocode 2, for assessing the slabs’ resistance to punching shear. Our experimental program investigated the impact of voiding former patterns and the location of

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Sep 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Experimental Study on Carbon Steel Corrosion and its Inhibition Using Sodium Benzoate Under Different Operating Conditions
...Show More Authors

Corrosion experiments were carried out to investigate the effect of several operating parameters on the corrosion rate and corrosion potential of carbon steel in turbulent flow conditions in the absence and presence of sodium benzoate inhibitor using electrochemical polarization technique. These parameters were rotational velocity (0 - 1.57 m/s), temperature (30oC – 50oC), and time. The effect of these parameters on the corrosion rate and inhibition efficiency were investigated and discussed. It was found that the corrosion rate represented by limiting current increases considerably with increasing velocity and temperature and that it decreased with time due to the formation of corrosion product layer. The corrosion potential shifted t

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Behavior of reactive powder concrete containing recycled glass powder reinforced by steel fiber
...Show More Authors
Abstract<p>Environmental sustainability is described as one that avoids the depletion or deterioration of natural resources, while also allowing for the preservation of long-term environmental quality. By practicing environmental sustainability, we may assist to guarantee that the requirements of today’s population are satisfied without risking the capacity of future generations to meet their own needs in the future. Engineers in the field of concrete production are becoming increasingly interested in sustainable development, which includes the utilization of the locally available materials in addition to using the agricultural and industrial waste in construction industry as one of the possib</p> ... Show More
View Publication
Crossref (11)
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Results In Engineering
Behavioral nonlinear modeling of prestressed concrete flexural members with internally unbonded steel strands
...Show More Authors

View Publication
Scopus (18)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Dental Hypotheses
Effect of Dentin Surface Pretreatment With Chitosan Nanoparticles on Immediate and Prolonged Shear Bond Strength of Resin Composite: An in Vitro Study
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref