In this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current density (C.D.) (10- 20 mA/cm2), pH (4- 10), time (2– 4 h), and NaCl concentration (1.5- 2.5 g/l) on the efficiency of COD reduction were examined. The results indicated that COD reduction increased with increasing C.D., NaCl conc., and electrolysis time and increased exponentially at pH (4). The best conditions for the treatment of this wastewater were: C.D. (20 mA/cm2), pH (4), time (4 h), and NaCl conc. (2.5 g/l). At these conditions, approximately 98.12 % of COD reduction was achieved with electrical energy consumption (ENC) of about 62.04 kWh/m3. The result of analysis of variance (ANOVA) revealed that the C.D. and pH have a higher influence on the performance of organics removal, while the time and NaCl conc. have a minor impact on COD Re%.
This study focused on treatment of real wastewater rejected from leather industry in Al-Nahrawan city in Iraq by Electrocoagulation (EC) process followed by Reverse Osmosis (RO) process. The successive treatment was applied due to high concentration of Cr3+ ions (about 1600 ppm) rejected in wastewater of this industry and for applying EC with moderate power consumption and better results of produced water. In Electrocoagulation process (EC), the effect of NaCl concentration (1.5, 3 g/l), current density (C.D.) (15-25 mA/cm2), electrolysis time (1-2 h), and distance between electrodes (E.D.) (1-2 cm) were examined in a batch cell by implementing Taguchi experimental design. According to the results obtained from multiple regression and signa
... Show MoreBackground: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studi
... Show MoreIn this study, ultraviolet (UV), ozone techniques with hydrogen peroxide oxidant were used to treat the wastewater which is produced from South Baghdad Power Station using lab-scale system. From UV-H2O2 experiments, it was shown that the optimum exposure time was 80 min. At this time, the highest removal percentages of oil, COD, and TOC were 84.69 %, 56.33 % and 50 % respectively. Effect of pH on the contaminants removing was studied in the range of (2-12). The best oil, COD, and TOC removal percentages (69.38 %, 70 % and 52 %) using H2O2/UV were at pH=12. H2O2/ozone experiments exhibited better performance compared to
... Show MoreThis paper investigated the treatment of textile wastewater polluted with aniline blue (AB) by electrocoagulation process using stainless steel mesh electrodes with a horizontal arrangement. The experimental design involved the application of the response surface methodology (RSM) to find the mathematical model, by adjusting the current density (4-20 mA/cm2), distance between electrodes (0.5-3 cm), salt concentration (50-600 mg/l), initial dye concentration (50-250 mg/l), pH value (2-12 ) and experimental time (5-20 min). The results showed that time is the most important parameter affecting the performance of the electrocoagulation system. Maximum removal efficiency (96 %) was obtained at a current density of 20 mA/cm2, distance be
... Show MoreThe electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples
... Show MoreThis research presents a study in ultra-desulfurization of diesel fuel produced from conventional hydro desulfurization process, using oxidation and solvent extraction techniques. Dibenzothiophene (DBT) was the organosulfur compound that had been detected in sulfur removal. The oxidation process used hydrogen peroxide as an oxidant and acetic acid as homogeneous catalyst . The solvent extraction process used acetonitrile (ACN) and N-methyl – 2 - pyrrolidone (NMP) as extractants . Also the effect of five parameters (stirring speed :150 , 250 , 350 , and 450) rpm, temperature (30 , 40 , 45 , and 50) oC, oxidant/simulated diesel fuel ratio (0.5 , 0.75 , 1 , and 1.5) , catalyst/oxidant ratio(0.125,0.25,0.5
... Show MoreThe present study addresses the behavior of gases in cultivation media as an essential factor to develop the relationship between the microorganisms that are present in the same environment. This relationship was explained via mass transfer of those gases to be a reasonable driving force in changing biological trends. Stripping and dissolution of oxygen and carbon dioxide in water and dairy wastewater were investigated in this study. Bubble column bioreactor under thermal control system was constructed and used for these processes. The experimental results showed that the removal of gases from the culture media requires more time than the dissolution. For example, the volumetric mass transfer coefficient for the removal
... Show MoreBackground: Oil refinery workers are continuously exposed to numerous hazardous materials. Petroleum contains the heavy metals as a natural constituent or as additives. These metals induce the production of ROS which associated with an oxidative damage to DNA, proteins, and lipids. This study was conducted to assess the salivary levels of heavy metals, salivary oxidative status, oral immunological activity (salivary sIgA) and assessment of the oral findings among the workers of Al-Daura oil refinery in Baghdad city. Subjects, Materials and Methods: This study was done in Al-Daura oil refinery; samples consist of 60 workers involved in refinery processes (study group) and 20 non-workers (control group). Oral examination and saliva collection
... Show MoreDairy wastewater generally contains fats, lactose, whey proteins, and nutrients. Casein precipitation causes the effluent to decompose into a dark, strong-smelling sludge. Fluid waste contains soluble organic matter, suspended solids, and gaseous organic matter, which cause undesirable taste and smell, grant tone and turbidity, and advance eutrophication, which plays an essential role in increasing biological oxygen demand (BOD) in water. It also contains detergents and disinfecting agents from the rinses and washing processes, which increase the need for chemical oxygen (COD). One of the characteristics of dairy effluents is their relatively high temperature, high organic contents, and wide pH range, so the discharge of wastewater into
... Show More