The employment of cognitive radio (CR) is critical to the successful development of wireless communications. In this field, especially when using the multiple input multiple output (MIMO) antenna technology, energy consumption is critical. If the principal user (PU) is present, developers can utilize the energy detecting approach to tell. The researchers employed two distinct phases to conduct their research: the intense and accurate sensing stages. After the furious sensing step was completed, the PU user was identified as having a maximum or minimal energy channel. There are two situations in which the proposed algorithm's performance is tested: channels for fading AWGN and Rayleigh. When the proposed methods' simulation results are compared with conventional approaches, the complexity of MIMO was reduced by roughly 42% at low SNR levels. With 70 samples and an acceptable drop in detection performance, the results were suitable for further testing.
This paper aims to verify the existence of relationships between product innovation and the reputation of the organization. The study problem is that the State Organization for Marketing of Oil (SOMO) system is inflexible in terms of marketing procedures and needs innovative, unconventional methods in innovating its products and improving performance. The reputation of the organization. The importance of the study lies in that it is an attempt to raise the interest of SOMO in its approach to the research variables in order to enhance its competitive position in the future and improve the marketing business environment, which contributes to enhancing the reputation of the organization by product innovation. The study sample
... Show MoreThe construction sector consumes large amounts of energy during the lifetime of a building. This consumption starts with manufacturing and transferring building materials to the sites and demolishing this building after a long time of occupying it. The topic of energy conservation and finding the solution inside the building spaces become an important and urgent necessity. It is known that the roof is exposed to a high amount of thermal loads compared to other elements in a building envelope, so this needs some solutions and treatments to control the flow of the heat through them. These solutions and treatments may be achieved by using nanomaterials. Recently, nanomaterials have high properties, so that this made them go
... Show MorePhase change materials (PCMs) such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES) has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.%) of (TiO2) nano-particles with about (10nm) diameter. It is found that the phase change temperature varies with adding (TiO2) nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity ha
... Show MoreThis study investigates the constructs and related theories that drive social capital in energy sector from the intention perspectives. This research uses theories of 'social support' and 'planned behaviour' alongside satisfaction and perceived value to propose a research model that drives social capital for energy sectors in Malaysia. The model reveals that the Theories of Planned Behaviour (TPB) and Social Support Theory (SST) alongside satisfaction and perceived value factors promote social capital development in energy sectors. Using PLS-SEM to analyse data gathered from energy sector employees in Malaysia, this research demonstrates that social capital is present when there is trust and loyalty among the users and positively effects en
... Show MoreAbstract
This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season. The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m
... Show MoreAbstract
This paper is an experimental work to determinate the effect of welding velocity and formed arc energy for CO2-MAG fusion weld pool. The input parameters (arc voltage, wire feed speed and gas flow rate) were investigated to find their effects on the weld joint efficiency. Design of experiment with response surface methodology technique was used to build empirical mathematical models for welding velocity and arc energy in term of the input welding parameters. The predicted quadratic models were statistically checked for adequacy purpose by ANOVA analysis. Additionally, numerical optimization was conducted to obtain the optimum values for welding velocity and arc energy. A good agree
... Show MoreThis study was prepared to investigate the performance and behavior of concrete thrust blocks supporting pipe fittings. In the water distribution networks, it is always necessary to change the path of the pipes at different degrees or to create new branches. In these regions, an unbalanced force called the thrust force is generated. In order to counter this force, these regions are supported with concrete blocks. In this article, the system components (soil, pipe with its bend and thrust blocks) have been numerically modeled and simulated by the ABAQUS CAE/2019 software program in order to study the behavior and stability of the thrust block with different burial conditions (several b
In this work, the possibility of utilizing osmosis phenomenon to produce energy as a type of the renewable energy using Thin Film Composite Ultra Low Pressure membrane TFC-ULP was studied. Where by forward osmosis water passes through the membrane toward the concentrated brine solution, this will lead to raise the head of the high brine solution. This developed static head may be used to produce energy. The aim of the present work is to study the static head developed and the flux on the high brine water solution side when using forward and reverse osmosis membranes for an initial concentration range from 35-300 g/l for each type of membrane used at room temperature and pressure conditions, and finally calculating the maximum possible po
... Show More