Preferred Language
Articles
/
lBZirIoBVTCNdQwC8qJ0
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet attacks using CICIDS2017 dataset. The proposed model designed based on two types of filters to the botnet features; Correlation Attribute Eval and Principal Component deployed to reduce the dataset dimensions and to decrease the time complexity of the botnet detection process. The detection enhancement achieved by reducing the features of the dataset from 85 to 9. The training stage of classifiers is developed and compared based on six classifiers called (Random Forest, IBK, JRip, Multilayer Perceptron, Naive Bayes and OneR) evaluated to accomplish an optimized detection model. The performance and results of the proposed framework are validated using well-known metrics such as Accuracy (ACC), Precision (Pr), Recall (Rc) and F-Measure (F1). The consequence is that the combination of Correlation Attribute Eval (filter) with JRip (classifier) together can satisfy significant improvement in the Botnet detection process using CICIDS2017 dataset.</p>
Scopus Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
Facial deepfake performance evaluation based on three detection tools: MTCNN, Dlib, and MediaPipe
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Aug 28 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Wed Aug 28 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Thu Jan 20 2022
Journal Name
Webology
Hybrid Intrusion Detection System based on DNA Encoding, Teiresias Algorithm and Clustering Method
...Show More Authors

Until recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Thu Mar 02 2023
Journal Name
Applied Sciences
Machine Learning Techniques to Detect a DDoS Attack in SDN: A Systematic Review
...Show More Authors

The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach

... Show More
View Publication Preview PDF
Scopus (93)
Crossref (90)
Scopus Clarivate Crossref
Publication Date
Tue Dec 10 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
Development of Robust and Efficient Symmetric Random Keys Model based on the Latin Square Matrix
...Show More Authors

Symmetric cryptography forms the backbone of secure data communication and storage by relying on the strength and randomness of cryptographic keys. This increases complexity, enhances cryptographic systems' overall robustness, and is immune to various attacks. The present work proposes a hybrid model based on the Latin square matrix (LSM) and subtractive random number generator (SRNG) algorithms for producing random keys. The hybrid model enhances the security of the cipher key against different attacks and increases the degree of diffusion. Different key lengths can also be generated based on the algorithm without compromising security. It comprises two phases. The first phase generates a seed value that depends on producing a rand

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Apr 30 2017
Journal Name
Journal Of Engineering
Compatibility between Hydraulic and Mechanical Properties of Ceramic Water Filters
...Show More Authors

In this paper, ceramic water filters were produced by using ten mixtures of different ratios of red clay and sawdust under different production conditions. The physical properties of these filters were tested. The production conditions include five press pressures ranged from 10 to 50MPa and a firing schedule having three different final temperatures of 1000, 1070, and 1100˚C. The tests results of the physical properties were used to obtain best compatibility between the hydraulic and the mechanical properties of these filters. Results showed that as the press pressure and the firing temperature are increased, the bulk density and the compressive and bending strengths of the produced filters are increased, while, the porosity and absorp

... Show More
View Publication Preview PDF
Publication Date
Sun May 22 2022
Journal Name
International Journal Of Early Childhood Special Education
The impact of an instructional-learning design based on the brain- compatible model in systemic thinking among first intermediate grade female students in Mathematics
...Show More Authors

The research aimed to identify “The impact of an instructional-learning design based on the brain- compatible model in systemic thinking among first intermediate grade female students in Mathematics”, in the day schools of the second Karkh Educational directorate.In order to achieve the research objective, the following null hypothesis was formulated:There is no statistically significant difference at the significance level (0.05) among the average scores of the experimental group students who will be taught by applying an (instructional- learning) design based to on the brain–compatible model and the average scores of the control group students who will be taught through the traditional method in the systemic thinking test.The resear

... Show More
Publication Date
Mon Feb 10 2025
Journal Name
Journal Of Optics
Implementing quantum key distribution based on coincidence detection captured from two different single photon detection modules
...Show More Authors

Quantum key distribution (QKD) provides unconditional security in theory. However, practical QKD systems face challenges in maximizing the secure key rate and extending transmission distances. In this paper, we introduce a comparative study of the BB84 protocol using coincidence detection with two different quantum channels: a free space and underwater quantum channels. A simulated seawater was used as an example for underwater quantum channel. Different single photon detection modules were used on Bob’s side to capture the coincidence counts. Results showed that increasing the mean photon number generally leads to a higher rate of coincidence detection and therefore higher possibility of increasing the secure key rate. The secure key rat

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
The Effects of Conductance on Metastable Switches in Memristive Devices Based on Anti-Hebbian and Hebbian (AHaH) Learning Rules
...Show More Authors

     In the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each MMS rather t

... Show More
Scopus (1)
Scopus Crossref