In recent years, infectious diseases are increasingly being encountered in clinical settings. Due to the development of antibiotic resistance and the outbreak of these diseases caused by resistant pathogenic bacteria, the pharmaceutical companies and the researchers are now searching for new unconventional antibacterial agents. Recently, in this field, the application of nanoparticles is an emerging area of nanoscience and nanotechnology. For this reason, nanotechnology has a great deal of attention from the scientific community and may provide solutions to technological and environmental challenges. A common feature that these nanoparticles exhibit their antimicrobial behavior against pathogenic bacteria. In this report, we evaluate the antibacterial activity of Ag, Fe and ZnO nanoparticles against both Gram-negative (E. coli and P. aeruginosa) and Gram-positive (Staph. aureus) bacteria, using agar well diffusion method, as well as determine of minimal bactericidal concentrations by the broth dilution method. The results showed that antibacterial activities of these nanoparticles were found active against both Gram-positive and Gram-negative bacteria used in this study. Among the three nanoparticles, Ag nanoparticles have excellent bactericidal potential, while Fe nanoparticles exhibited the least bactericidal activity.
An enzyme linked immunosorbent assay (ELISA) for the detection and quantitation of human immunoglobulin G (IgG) antibodies against vero- cytotoxine (VT) producing Escherichia coli serogroup O157:H7 was produced. E. coli O157: H7 lipopolysaccharide was extracted from locally isolated strains by using hot phenol- water method, followed by partial purification using gel filtration chromatography by sepharose- 4B. The purity of the lipopolysaccharide was checked by measuring the protein and nucleic acid content and then used as antigen. Four isolates of vero- cytotoxin producing E. coli serogroup O157:H7 was obtained by culturing 350 stool samples from children suffering from bloody diarrhea. These isolates were identified on bacteriological, s
... Show MoreThirty six bacteria were isolated from various sourcesc (soil, starch, cooked rice and other foods) and subjected to a series of primary screening tests to obtain the optimal isolation to production of amylase. The volume of producing zone by logal indicator for (Seven) isolates of the secondary screening by measuring the enzymatic activity and specific enzymatic activity. The isolate A4 was found to be the most efficient for production of amylase. Then this isolate was diagnosed through microscopic, vitek 2 system technique. in addition by gentic diagnesis through gene 16s of the genes nitrogen bases by use the polymerase chain reaction (PCR) which reached 1256 bases. In comparison to the available information at the National Center for
... Show Moresilver nanoparticle which synthesized by.
Olanzapine (OLZ) is classified as a typical antipsychotic drug utilized for the treatment of schizophrenia. Its oral bioavailability is 60% due to its low solubility and pre-systemic metabolism. Hence, the present work aims to formulate and evaluate OLZ nanoparticles dissolving microneedles (MNs) for transdermal delivery to overcome the problems associated with drug administration orally. OLZ nanoparticles were prepared by the nanoprecipitation method. The optimized OLZ nanoparticle formula was utilized for the fabrication of dissolving MNs by loading OLZ nanodispersion into polydimethylsiloxane (PDMS) micromould cavities, followed by casting the polymeric solution of polyvinylpyrrolidone(PVP-K30) and polyvinyl alcohol (PVA) to form
... Show MoreThe snthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes of azo ligand 4-[(5-acetyl-2-aminophenyl)- diazenyl]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one derived from 4-aminoantipyrine and 4-aminoacetophenone are reported. The nature of the compounds have been studied followed by mole ratio and methods of continuous contrast, Beer′s law followed during a condensation rate (1 × 10-4 – 3 × 10-4 M). The analytical data showed that all the complexes are in 1:2 metal-ligand ratio. An octahedral geometry have been suggested for all the compounds and biological studies of all the complexes were evaluated against different types of antimicrobial strains.
Sulfamethoxazole (SMX) is the most significant antibiotic in the sulfonamide family. It was chosen as the representative of this category because of its widespread use. Starting with sulfamethoxazole, a new series of 2-Azetidinone (M1-M6) was synthesized, the structure of these new derivatives was confirmed using spectral methods, starting with the synthesis of Schiff’s bases by reflux of different aromatic benzaldehydes, separately, with Sulfamethoxazole in ethanol with few drops of acetic acid. The final compounds were obtained by ketene-imine synthesis of β-lactam using chloroacetyl chloride. The designed chemicals’ synthesis has been completed successfully. Physical parameters (melting points and Rf values), Fourier transfo
... Show More