Wellbore instability problems cause nonproductive time, especially during drilling operations in the shale formations. These problems include stuck pipe, caving, lost circulation, and the tight hole, requiring more time to treat and therefore additional costs. The extensive hole collapse problem is considered one of the main challenges experienced when drilling in the Zubair shale formation. In turn, it is caused by nonproductive time and increasing well drilling expenditure. In this study, geomechanical modeling was used to determine a suitable mud weight window to overpass these problems and improve drilling performance for well development. Three failure criteria, including Mohr–Coulomb, modified Lade, and Mogi–Coulomb, were used to predict a safe mud weight window. The geomechanical model was constructed using offset well log data, including formation micro-imager (FMI) logs, acoustic compressional wave, shear wave, gamma ray, bulk density, sonic porosity, and drilling events. The model was calibrated using image data interpretation, modular formation dynamics tester (MDT), leak-off test (LOT), and formation integrity test (FIT). Furthermore, a comparison between the predicted wellbore instability and the actual wellbore failure was performed to examine the model's accuracy. The results showed that the Mogi–Coulomb failure and modified Lade criterion were the most suitable for the Zubair formation. These criteria were given a good match with field observations. In contrast, the Mohr–Coulomb criterion was improper because it does not match shear failure from the caliper log. In addition, the obtained results showed that the inappropriate mud weight (10.6 ppg) was the main cause behind wellbore instability problems in this formation. The optimum mud weight window should apply in Zubair shale formation ranges from 11.5 to 14 ppg. Moreover, the inclination angle should be less than 25 degrees, and azimuth ranges from 115 to 120 degrees northwest-southeast (NE–SW) can be presented a less risk. The well azimuth of NE–SW direction, parallel to minimum horizontal stress (Shmin), will provide the best stability for drilling the Zubair shale formation. This study's findings can help understand the root causes of wellbore instability in the Zubair shale formation. Thus, the results of this research can be applied as expenditure effectiveness tools when designing for future neighboring directional wells to get high drilling performance by reducing the nonproductive time and well expenses.
Basin analysis (geohistory) is carried out on the Cretaceous to Tertiary succession in five wells at Kirkuk and Bai Hassan Oil Fields during the Aptian to the Recent. The Foothill Zone exhibited a complex subsidence and uplift history over a period of about 132 Ma. The results from studied wells backstripping provide a record of the subsidence and uplift history in a number of important Meso-Cenozoic depositional successions. They show that there are three distinct episodes separated by unconformity surfaces. The value of compaction varies from large during the Cretaceous period to less clearly during the Paleogene and then almost non-existent during the Neogene. Generally, the subsidence is continuous and gradual during Mesozoic and sud
... Show MoreThe emergence of oil fields and subsequent changes in adjacent land use are known to affect settlements and communities. Everywhere the industry emerges, there is little understanding about the impact of oil fields on land use in the surrounding areas. The oil industry in Iraq is one of the most important industries and is almost the main industry in the Iraqi economic sector, and it is very clear that this industry is spread over large areas, and at the same time adjoins with population communities linked to it developmentally.
The rapid development and expansion of oil extraction activities in various regions has led to many challenges related to land-use planning and management. Here, the problem of research arises on th
... Show MoreThis paper develops a nonlinear transient three-dimensional heat transfer finite element model and a rate independent three-dimensional deformation model, developed for the CO2 laser welding simulations in Al-6061-T6 alloy. Simulations are performed using an indirect coupled thermal-structural method for the process of welding. Temperature-dependent thermal properties of Al-6061-T6, effect of latent heat of fusion, and the convective and radiative boundary conditions are included in the model. The heat input to the model is assumed to be a Gaussian heat source. The finite element code ANSYS12, along with a few FORTRAN subroutines, are employed to obtain the numerical results. The benefit of the proposed methodology is that it
... Show MoreWith the spread use of internet, especially the web of social media, an unusual quantity of information is found that includes a number of study fields such as psychology, entertainment, sociology, business, news, politics, and other cultural fields of nations. Data mining methodologies that deal with social media allows producing enjoyable scene on the human behaviour and interaction. This paper demonstrates the application and precision of sentiment analysis using traditional feedforward and two of recurrent neural networks (gated recurrent unit (GRU) and long short term memory (LSTM)) to find the differences between them. In order to test the system’s performance, a set of tests is applied on two public datasets. The firs
... Show MoreA high percentage of existing buildings in Iraq are traditional buildings, yet there is approximately no such green building in Baghdad or other governorates. Most of these buildings require urgent upgrading to increase their performance (operationally, economically, and environmentally), also the building owners looking for identifying and implementing many of the green building measures to reduce the operational and maintenance costs of their buildings. The decision-makers need to support the possibility of achieving sustainable measures of existing building rating systems such as LEED or BREEAM, and that would require an optimization model. The goal of this study is to maximize the
Background:The document on hypertension in the elderly promoted by the American college of cardiology and the American heart association (ACCF/AHA) was written with the intent to be a complete reference at the time of publication on the topic of managing hypertension in the elderly. More recently, the European society of hypertension (ESH) and the European society of cardiology (ESC) issued the 2013 ESH/ESC Guidelines for the management of arterial hypertension, followed by The 2014 Canadian Hypertension Education Program (CHPE), and the Eighth Report of the Joint National Committee (JNC8), all of which has endorsed specific recommendations for the management of elderly hypertensive patients.
The preparation of the phenanthridine derivative compound was achieved by adopting an efficient one-pot synthetic approach. The condensation of an ethanolic mixture of benzaldehyde, cyclohexanone and ammonium acetate in a 2:1:1 mole ratio resulted in the formation of the title compound. Analytical and spectroscopic techniques were used to confirm the nature of the new compound. A mechanism for the formation of the phenanthridine moiety that is based on three steps has been suggested
The sequence in the upper part of the Balambo Formation is composed mainly of limestone alternating with marly limestones and dark grey shale in the Bosheen section (eastern Sulaymaniyah, northeastern Iraq) and has been studied in terms of its rare earth element (REE) content. The REEs are very low compared to modern marine sediments. They are depletion in LREEs, and enrichment in HREEs and (La/Yb)N in the studied rocks, indicating that these sediments retained the REEs pattern of marine waters. The negative Ce anomaly reflects direct sedimentation from marine waters under anoxic conditions with the contribution of terrigenous clays. The positive correlation of ∑REEs with Al, Ti, and Y, and the negative correlation of ∑REE
... Show MoreIn recent years the interest in fractured reservoirs has grown. The awareness has increased analysis of the role played by fractures in petroleum reservoir production and recovery. Since most Iraqi reservoirs are fractured carbonate rocks. Much effort was devoted to well modeling of fractured reservoirs and the impacts on production. However, turning that modeling into field development decisions goes through reservoir simulation. Therefore accurate modeling is required for more viable economic decision. Iraqi mature field being used as our case study. The key point for developing the mature field is approving the reservoir model that going to be used for future predictions. This can