Wellbore instability problems cause nonproductive time, especially during drilling operations in the shale formations. These problems include stuck pipe, caving, lost circulation, and the tight hole, requiring more time to treat and therefore additional costs. The extensive hole collapse problem is considered one of the main challenges experienced when drilling in the Zubair shale formation. In turn, it is caused by nonproductive time and increasing well drilling expenditure. In this study, geomechanical modeling was used to determine a suitable mud weight window to overpass these problems and improve drilling performance for well development. Three failure criteria, including Mohr–Coulomb, modified Lade, and Mogi–Coulomb, were used to predict a safe mud weight window. The geomechanical model was constructed using offset well log data, including formation micro-imager (FMI) logs, acoustic compressional wave, shear wave, gamma ray, bulk density, sonic porosity, and drilling events. The model was calibrated using image data interpretation, modular formation dynamics tester (MDT), leak-off test (LOT), and formation integrity test (FIT). Furthermore, a comparison between the predicted wellbore instability and the actual wellbore failure was performed to examine the model's accuracy. The results showed that the Mogi–Coulomb failure and modified Lade criterion were the most suitable for the Zubair formation. These criteria were given a good match with field observations. In contrast, the Mohr–Coulomb criterion was improper because it does not match shear failure from the caliper log. In addition, the obtained results showed that the inappropriate mud weight (10.6 ppg) was the main cause behind wellbore instability problems in this formation. The optimum mud weight window should apply in Zubair shale formation ranges from 11.5 to 14 ppg. Moreover, the inclination angle should be less than 25 degrees, and azimuth ranges from 115 to 120 degrees northwest-southeast (NE–SW) can be presented a less risk. The well azimuth of NE–SW direction, parallel to minimum horizontal stress (Shmin), will provide the best stability for drilling the Zubair shale formation. This study's findings can help understand the root causes of wellbore instability in the Zubair shale formation. Thus, the results of this research can be applied as expenditure effectiveness tools when designing for future neighboring directional wells to get high drilling performance by reducing the nonproductive time and well expenses.
Shear wave velocity is an important feature in the seismic exploration that could be utilized in reservoir development strategy and characterization. Its vital applications in petrophysics, seismic, and geomechanics to predict rock elastic and inelastic properties are essential elements of good stability and fracturing orientation, identification of matrix mineral and gas-bearing formations. However, the shear wave velocity that is usually obtained from core analysis which is an expensive and time-consuming process and dipole sonic imager tool is not commonly available in all wells. In this study, a statistical method is presented to predict shear wave velocity from wireline log data. The model concentrated to predict shear wave velocity fr
... Show More3D seismic reflection study was applied to Abu Amood oil field which is located at the southern part of Iraq within DhiQar province that carried out by oil Exploration Company to an area of 1534.88 Km2 for studying Nahr Umr Formation. Synthetic seismogram was prepared by using available data of well (AAM-1) in order to define and picking the reflectors on the seismic section. These reflectors are (Top of Nahr Umr Formation and middle unit of Nahr Umr Formation which represents the layer of sand). The seismic section time slice maps confirmed that the Nahr Umr Formation was not affected by faults and the faults may probably present in the Ratawai and Yamama Formations, where the variance attribute applied on seismic sections showed that t
... Show MoreThe Yamama Formation includes important carbonates reservoir that belongs to the Lower Cretaceous sequence in Southern Iraq. This study covers two oil fields (Sindbad and Siba) that are distributed Southeastern Basrah Governorate, South of Iraq. Yamama reservoir units were determined based on the study of cores, well logs, and petrographic examination of thin sections that required a detailed integration of geological data and petrophysical properties. These parameters were integrated in order to divide the Yamama Formation into six reservoir units (YA0, YA1, YA2, YB1, YB2 and YC), located between five cap rock units. The best facies association and petrophysical properties were found in the shoal environment, wh
... Show MoreThe Nahr Umr Formation, one of the most important Cretaceous formations and one of the main generating reservoirs in southern Iraq and neighboring regions, was chosen to study and estimate its petrophysical properties using core plugs, lithofacies, and well logs from five wells in the Noor oilfield. Reservoir properties and facies analyses are used to divide the Nahr Umr formation into two-member (limestone in the upper part and main sandstone in the lower). Limestone members are characterized by low reservoir properties related to low effective porosity and permeability while the main sandstone member is considered as a reservoir. Four lithofacies were recognized in the main sandstone member of the Nahr Umr Formation according to petrog
... Show MoreThe current study includes building (CPI) & Petrophysical Evaluation of the Mishrif Formation (Cenomanian-Early Turonian) in Tuba oilfield, southern Iraq by using Interactive Petrophysics Program v3.5 (IP) to evaluate different logs parameters that control the reservoir quality of Mishrif Formation such as shale volume, effective porosity, and water saturation. Mishrif Formation is subdivided into several units, which are characterized by different reservoir properties. These units are Top of Mishrif, MA, CR2, MB1, and MB2.The results of computer processed interpretation (CPI) show that the major reservoir unit are (MB1 and MB2), which are characterized by high effective porosity and oil saturation. In addition, these uni
... Show MoreThe biostratigraphy of the Early Cretaceous Mauddud Formation was studied in the Ratawi Oilfield, Basra Governorate, southern Iraq, using integrated borehole data set (core and cutting samples and well logs) in two drilled wells to analyze the biostratigraphy of the formation. One hundred eighty-three slides for both selected wells were investigated. The formation is composed of light grey dolomitized limestone and pseudo-oolitic creamy limestone with green to bluish shale. Three biozones were discriminated, these are: Orbitolina qatarica range zone; Orbitolina sefini range zone and Orbitolina concava range zone. The age of these biozones extends to include the Late Albian (Orbitolina qatarica<
... Show MoreThe objective of this paper is determining the petrophysical properties of the Mauddud Formation (Albian-Early Turonian) in Ratawi Oil Field depending on the well logs data by using interactive petrophysical software IP (V4.5). We evaluated parameters of available logs that control the reservoir properties of the formation, including shale volume, effective porosity, and water saturation. Mauddud Formation is divided into five units, which are distinguished by various reservoir characteristics. These units are A, B, C, D, and E. Through analyzing results of the computer processed interpretation (CPI) of available wells, we observed that the main reservoir units are B and D, being distinguished by elevated values of eff
... Show MoreOil recovery could be impacted by the relation between vertical permeability (Kv) and horizontal permeability (Kh) (Kv/Kh). 4816 plugs that have been getting hold of 18 wells of Mishrif formation in the West Qurna oilfield were used. Kv/Kh data provided some scatter, but the mean is ~1. Kv/Kh =1 was used for the Petrel model before upscaling according to the heterogeneity of each layer.
Kv/Kh values for Mishrif Formation in West Qurna Oilfield are 0.8 for relatively homogeneous, 0.4 for heterogeneous rock, and 0.1 for cap rocks (CRII).
Eclipse TM was used for reservoir simulation. PVT and SCAL data e
... Show MoreThe litholog of Nahr Umr Formation was evaluated using the Acoustic Impedance (AI), Vp/Vs ratio cross plot colored by petrophysical properties (Vsh, PHIT, PHIE, and Sw) in Am-6-Am-10 wells. Bulk density is an important physical property that reflects matrix density and fluid density that exist in rocks pores. It is used as the main parameters to estimate physical characteristics (porosity, water saturation, shale volume, and others). AI was calculated using RHOB and VP logs. Shear velocity was calculated using Greenberg Castagna equations used for estimating the Vp/Vs ratio and the result Showed that the Nahr Umr Formation is composed of two main lithological units. The upper unit (depth 3540m -3672m) is composed of limestone (li
... Show MorePetrophysical properties of Mishrif Formation at Amara oil field is determined
from interpretation of open log data of (Am-1, 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12
and13) wells. These properties include the total, the effected and the secondary
porosity, as well as the moveable and the residual oil saturation in the invaded and
uninvaded zones. According to petrophysical properties it is possible to divided
Mishrif Formation which has thickness of a proximately 400 m, into seven main
reservoir units (MA, MB11, MB12, MB13, MB21, MC1, MC2) . MA is divided into
four secondary reservoir units , MB11 is divided into five secondary reservoir units ,
MB12 is divided into two secondary reservoir units , MB13 is divided into