Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is needed, one that can represent the key aspects of soil behavior using simple parameters. In this regard, the powerful hypoplasticity model is suggested in this paper. It is classified as a non-linear model in which the stress increment is stated in a tonsorial form as a function of strain increment, actual stress, and void ratio. Eight material characteristics are needed for the hypoplastic model. The hypoplastic model has a unique way to keep the state variables and material parameters separated. Because of this property, the model can implement the behavior of soil under a variety of stresses and densities while using the same set of material properties.
The paper examines key aspects of the use of phraseologi-cal units related to colors in Russian culture and speech. It explores their role in shaping cultural identity, reflecting national characteristics and men-tality. The study analyzes the frequency and contexts of the use of color-related phraseological units in contemporary speech, as well as the influ-ence of media and literature on their popularization. The author highlights the significance of phraseological units in preserving cultural heritage and fostering a deeper understanding of language and culture.
Statistical methods of forecasting have applied with the intention of constructing a model to predict the number of the old aged people in retirement homes in Iraq. They were based on the monthly data of old aged people in Baghdad and the governorates except for the Kurdistan region from 2016 to 2019. Using BoxJenkins methodology, the stationarity of the series was examined. The appropriate model order was determined, the parameters were estimated, the significance was tested, adequacy of the model was checked, and then the best model of prediction was used. The best model for forecasting according to criteria of (Normalized BIC, MAPE, RMSE) is ARIMA (0, 1, 2)
This study provides valuable information on secondary microbial infections in H1N1 patients compared to Seasonal Influenza in Iraqi Patients. Nasopharynx swabs were collected from (12 ) patients infected with Seasonal influenza (11 from Baghdad and 1 Patient from south of Iraq) ,and ( 22 ) samples from patients with 2009 H1N1 ( 20 from Baghdad and 2 from south of Iraq). The results show that the patients infected with 2009 H1N1 Virus were younger than healthy subjects and those infected with seasonal influenza. And the difference reached to the level of significance (p< 0.01) compared with healthy subjects.Two cases infected with 2009 H1N1 virus (9.1%) were fro
... Show MoreTrip generation is the first phase in the travel forecasting process. It involves the estimation of the
total number of trips entering or leaving a parcel of land per time period (usually on a daily basis);
as a function of the socioeconomic, locational, and land-use characteristics of the parcel.
The objective of this study is to develop statistical models to predict trips production volumes for a
proper target year. Non-motorized trips are considered in the modeling process. Traditional method
to forecast the trip generation volume according to trip rate, based on family type is proposed in
this study. Families are classified by three characteristics of population social class, income, and
number of vehicle ownersh
Single-photon detection concept is the most crucial factor that determines the performance of quantum key distribution (QKD) systems. In this paper, a simulator with time domain visualizers and configurable parameters using continuous time simulation approach is presented for modeling and investigating the performance of single-photon detectors operating in Gieger mode at the wavelength of 830 nm. The widely used C30921S silicon avalanche photodiode was modeled in terms of avalanche pulse, the effect of experiment conditions such as excess voltage, temperature and average photon number on the photon detection efficiency, dark count rate and afterpulse probability. This work shows a general repeatable modeling process for significant perform
... Show MoreTin oxide was deposited by using vacuum thermal method on silicon wafer engraved by Computer Numerical Controlled (CNC) Machine. The inscription was engraved by diamond-made brine. Deep 0.05 mm in the form of concentric squares. Electrical results in the dark were shown high value of forward current and the high value of the detection factor from 6.42 before engraving to 10.41 after engraving. (I-V) characters in illumination with powers (50, 100, 150, 200, 250) mW/cm2 show Improved properties of the detector, Especially at power (150, 200, 250) mW/cm2. Response improved in rise time from 2.4 μs to 0.72 μs and time of inactivity improved 515.2 μs to 44.2 μs. Sensitivity angle increased at zone from 40o to 65o.
A system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.
Laser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable