Background: The possibility of converting the organic fraction of municipal solid waste to mature compost using the composting bin method was studied. Nine distinct treatments were created by combining municipal solid waste (MSW) with animal waste (3:1, 2:1), poultry manure (3:1, 2:1), mixed waste (2:1:1), agricultural waste (dry leaves), biocont (Trichoderm hazarium), and humic acid. Weekly monitoring of temperature, pH, EC, organic matter (OM percent), and the C/N ratio was performed, and macronutrients (N, P, K) were measured. Trace elements, including heavy metals (Cd and Pb), were tested in the first and final weeks of maturity. Results: Temperatures in the first days of composting reached the thermophilic phase in MSW compost with animal and poultry manure between 55–60 °C, pH and EC (mS/cm) increased during the composting period in most composting bin treatments. Overall, organic matter (OM percent) and the C/N ratio decreased (10.27 to 18.9) as result of microbial activity during composting. Organic matter loss percent was less in treatments containing additives (biocont l humic acid) as well agricultural waste treatment. Composting bin treatments with animals and poultry showed higher K and P at the mature stage with an increase in micronutrients. Finally heavy metals were (2.25–4.20) mg/kg and (139–202) mg/kg for Cd and Pb respectively at maturation stage. Conclusion: Therefore, the results suggested that MSW could be composted in the compost bin method with animal and poultry manure. The physio-chemical parameters pH, Ec and C/N were within the acceptable standards. Heavy metals and micronutrients were under the limits of the USA standards. The significance of this study is that the compost bin may be used as a quick check to guarantee that the outputs of long-term public projects fulfill general sustainability requirements, increase ecosystem services, and mitigate the effect of municipal waste disposal on climate change particularly the hot climate regions.
The choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators. To mo
... Show MoreThe choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators.
... Show MoreBiological activity of the carotenoids which are produced fromchemically-mutaed local isolate of Rhodotorula mucilaginosawas studied. The results showed variation of inhibition activity of caritenoids against different types of pathogenic bacteria include, Staph aureus, E. coli, B. subtilis and Salmo. typh., the number declined from 2×107cell/ml to 2×104, 5×104, 2×105, 9×105 cell/ml respectively after 24hour. The produced carotenoids from alocal mutant Rhodotorula mucilaginosa revealed an antioxidant activity as free radical removal of 85.6%. Carotinoides revealed a highest stability in petroleum ether solvent for 30 days at room temperature. It found that the pigment was more stability in sesame oil compared with sun flower and coc
... Show MoreThe present work elucidates the utilization of activated carbon (AC) and activated carbon loaded with silver nanoparticles (AgNPs-AC) to remove tetracycline (TC) from synthetically polluted water. The activated carbon was prepared from tea residue and loaded with silver nanoparticles. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) were used to characterize the activated carbon (AC) and silver nanoparticles-loaded activated carbon (AgNPs-AC). The impact of various parameters on the adsorption effectiveness of TC was examined. These variables were the initial adsorbate concentration (Co), solution acidity (pH), adsorption time (t), and dosag
... Show MoreAbstract: The aim of the present work is to measure radon concentration in wood. Solid state nuclear track detectors of type CR – 39 was used as measurement device. Eight different samples of imported and local wood were collected from markets. Samples were grinded, dried in order to measure radon concentrations in it. Cylindrical diffusion tube was used as detection technique. Results show that the higher concentration was in Iraqi sample 1 which recorded (14.02 ± 0.9) Bq / m3, while the less was in Emirates Sample which recorded (5.35 ± 1.2) Bq / m3. From the present work, all wood samples were with lowest concentrations of radon gas than other building materials.
This study aims to assess the removal efficiency andestablish the BOD5 and COD statisticalcorrelation of the sewage flowing in Al-Diwaniyah wastewater treatment plant in Iraq during the study period (2005-2016). The strength of the influent wastewater entering the plant varied from medium to high in strength. High concentrations of BOD5 and COD in the effluent were obtained due to the poor performance of the plant. This was observed from the BOD5 /COD ratios that did not confirm with the typical ratios for the treated sewage. To improve the performance of this plant, regression equations for BOD5 and COD removal percentages were suggested which can be used to facilitate evaluation of liquid waste and optimal control process. The equations
... Show MoreThis study was conducted for evaluating the cytotoxic effect of heat stable enterotoxin a (STa) produced by enterotoxigenic Escherichia coli on the proliferation of primary cancer cell cultures, obtained from tumor samples that were collected from (13) cancer patients and as follows: (five colon cancer patients, two bladder cancer patients, two breast cancer patients, two stomach cancer patients and two lung cancer patients), and on normal cell line (rat embryonic fibroblast / REF) (in vitro) with the use of different concentrations starting from (1) mg/ml and ending with (0.0002) mg/ml by making two fold serial dilutions by using the 96- well microtiter plate, and in comparison with negative (PBS) and positive (MMC, at concentration
... Show MoreIn this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.
In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.