Beyond the immediate content of speech, the voice can provide rich information about a speaker's demographics, including age and gender. Estimating a speaker's age and gender offers a wide range of applications, spanning from voice forensic analysis to personalized advertising, healthcare monitoring, and human-computer interaction. However, pinpointing precise age remains intricate due to age ambiguity. Specifically, utterances from individuals at adjacent ages are frequently indistinguishable. Addressing this, we propose a novel, end-to-end approach that deploys Mozilla's Common Voice dataset to transform raw audio into high-quality feature representations using Wav2Vec2.0 embeddings. These are then channeled into our self-attention-based convolutional neural network (CNN) model. To address age ambiguity, we evaluate the effects of different loss functions such as focal loss and Kullback-Leibler (KL) divergence loss. Additionally, we evaluate the accuracy of the estimation at different durations of speech. Experimental results from the Common Voice dataset underscore the efficacy of our approach, showcasing an accuracy of 87% for male speakers, 91% for female speakers and 89% overall accuracy, and an accuracy of 99.1% for gender prediction.
This study was carried out for direct detection of typhi and some of its multidrug resistance genes(tem,capt,gyrA&sul2)which encode for resistance to (Ampicillin, Chloramphenicol,Ciprofioxacin,Co-trimoxazole)by using Polymerase Chain Reaction technique .(71)blood samples for people suffering from typhoid fever symptoms depending on the clinical examination and (25)for control were collected. The results investigation for flic gene which encode for flagellin protein indicated that only (19)with percentage of (26,76%)gave appositive results while all control had a negative ones. Investigation for antibiotic resistance drug in samples which show positive results for flic gene showed that there is a multidrug for all antibiotics with (94.7
... Show MoreEnvironmental factors that damage plant cells by dehydrating them, such cold, drought, and high salinity, are the most common environmental stresses that have an impact on plant growth, development, and productivity in cultivated regions around the world. Several types of plants have several drought, salinity, and cold inducible genes that make them tolerant to environmental challenges. The purpose of this study was to investigate several species in
Background:SARS-CoV-2 infection has caused a global pandemic that continues to negatively impact human health. A large group of microbial domains including bacteria co-evolved and interacted in complex molecular pathogenesis along with SARS-CoV-2. Evidence suggests that periodontal disease bacteria are involved in COVID-19, and are associated with chronic inflammatory systemic diseases. This study was performed to investigate the association between bacterial loads of Porphyromonas gingivalis and pathogenesis of SARS-CoV-2 infection. Fifty patients with confirmed COVID-19 by reverse transcriptase-polymerase chain reaction, their age ranges between 20-76 years, and 35 healthy volunteers (matched accordingly with age and sex to th
... Show MoreIn accordance with epidemic COVID-19, the elevated infection rates, disinfectant overuse and antibiotic misuse what led to immune suppression in most of the population in addition to genotypic and phenotypic alterations in the microorganisms, so a great need to reevaluate the genetic determinants that responsible for bacterial community (biofilm) has been raised. A total of 250 clinical specimens were obtained from patients in Baghdad hospitals and streaked on Mannitol salt agar medium. The results revealed that 156 isolates appeared as round yellow colonies, indicating that they were mostly identified as Staphylococcus aureus from 250 specimens. The antibiotic resistance pattern of the isolates for methicillin 37.17% (n=58), Amoxic
... Show MoreThe increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion
... Show MoreIn this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.
... Show MoreBackground: The diagnosis of prostatic pathology may be of challenging , as some difficult and suspected, atypical cases may lack basal cell layer by routine H&E sections . Antibodies against 34BE12(HMW-CK) and p63 aid the diagnosis of such cases , to distinguish benign from malignant prostatic lesions.
Objective: to identify basal cells in atypical prostatic lesions ,and distinguish benign from malignant prostatic lesions.
Type of the study: A retro-spective study.
Methods: 115cases of paraffin embedded prostatic tissue blocks ,diagnosed as : 76 cases were benign prostatic hy
... Show MoreA nano-sensor for nitrotyrosine (NT) molecule was found by studying the interactions of NT molecule with new B24N24 nanocages. It was calculated using density functionals in this case. The predicted adsorption mechanisms included physical and chemical adsorption with the adsorption energy of −2.76 to −4.60 and −11.28 to −15.65 kcal mol−1, respectively. The findings show that an NT molecule greatly increases the electrical conductivity of a nanocage by creating electronic noise. Moreover, NT adsorption in the most stable complexes significantly affects the Fermi level and the work function. This means the B24N24 nanocage can detect NT as a Φ–type sensor. The recovery time was determined to be 0.3 s. The sensitivity of pure BN na
... Show MoreBackground: Hyperlipidemia is an elevated fat (lipids), mostly cholesterol and triglycerides, in the blood. These lipids usually bind to proteins to remain circulated so-called lipoprotein. Aims of the study: To determine taste detection threshold and estimate the trace elements (zinc) in serum and saliva of those patients and compare all of these with healthy control subjects. Methods: Eighty subjects were incorporated in this study, thy were divided into two groups: forty patients on simvastatin treatment age between (35-60) years, and forty healthy control of age range between (35-60) years. Saliva was collected by non-stimulated technique within 10 minutes. Serum was obtained from each subject. Zinc was estimated in serum and saliva
... Show MoreThe meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when
... Show More