Preferred Language
Articles
/
kxfUjJIBVTCNdQwCbLbe
Synthesis of Novel Heteroatom-Doped Porous-Organic Polymers as Environmentally Efficient Media for Carbon Dioxide Storage
...Show More Authors

The high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning electron microscopy (FESEM) images showed that the surface morphologies of the synthesized POPs were similar to coral reefs. They had grooved networks, long range periodic macropores, amorphous surfaces, and a high surface area (SBET = 82.71–213.54 m2/g). Most importantly, they had considerable carbon dioxide storage capacity, particularly at high pressure. The carbon dioxide uptake at 323 K and 40 bar for one of the POPs was as high as 1.42 mmol/g (6.00 wt %). The high carbon dioxide uptake capacities of these materials were primarily governed by their geometries. The POP containing a meta-phosphate unit leads to the highest CO2 uptake since such geometry provides a highly distorted and extended surface area network compared to other POPs.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Global Pharma Technology
Modified ZnO for efficient photo-catalysis by Silver/Graphite oxide nanoparticles
...Show More Authors

Scopus (4)
Scopus
Publication Date
Sat Jan 01 2022
Journal Name
Proceeding Of The 1st International Conference On Advanced Research In Pure And Applied Science (icarpas2021): Third Annual Conference Of Al-muthanna University/college Of Science
Efficient approach for solving high order (2+1)D-differential equation
...Show More Authors

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jan 04 2018
Journal Name
Journal Of Electrical Engineering And Technology
An efficient selective method for audio watermarking against de-synchronization attacks
...Show More Authors

View Publication
Scopus (7)
Scopus
Publication Date
Wed Apr 06 2022
Journal Name
Journal Of Composites Science
Solar-Light-Driven Ag9(SiO4)2NO3 for Efficient Photocatalytic Bactericidal Performance
...Show More Authors

Photocatalytic materials are being investigated as effective bactericides due to their superior ability to inactivate a broad range of dangerous microbes. In this study, the following two types of bacteria were employed for bactericidal purposes: Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The shape, crystal structure, element percentage, and optical properties of Ag9(SiO4)2NO3 were examined after it was successfully synthesized by a standard mixing and grinding processing route. Bactericidal efficiency was recorded at 100% by the following two types of light sources: solar and simulated light, with initial photocatalyst concentration of 2 µg/mL, and 97% and 95% of bactericidal acti

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
An efficient method for stamps recognition using Haar wavelet sub-bands
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref
Publication Date
Sat Oct 28 2023
Journal Name
Baghdad Science Journal
Synthesis and Characterization of Calcium Oxide Impregnated on Silica from Duck Egg Shells and Rice Husks as Heterogeneous Catalysts for Biodiesel Synthesis
...Show More Authors

Biodiesel can be prepared from various types of vegetable oils or animal fats with the aid of a catalyst.
Calcium oxide (CaO) is one of the prospective heterogeneous catalysts for biodiesel synthesis. Modification
of CaO by impregnation on silica (SiO2) can improve the performance of CaO as catalyst. Egg shells and rice
husks as biomass waste can be used as raw materials for the preparation of the silica modified CaO catalyst.
The present study was directed to synthesize and characterize CaO impregnated SiO2 catalyst from biomass
waste and apply it as catalyst in biodiesel synthesis. The catalyst was synthesized by wet impregnation
method and characterized by x-ray diffraction, x-ray fluorescence, nitr

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sun Mar 05 2017
Journal Name
Baghdad Science Journal
An efficient of Sansevieriatrifasciataplantas biosorbent for the treatment of metal contaminated industrial effluents
...Show More Authors

Sansevieriatrifasciata was studied as a potential biosorbent for chromium, copper and nickel removal in batch process from electroplating and tannery effluents. Different parameters influencing the biosorption process such as pH, contact time, and amount of biosorbent were optimized while using the 80 mm sized particles of the biosorbent. As high as 91.3 % Ni and 92.7 % Cu were removed at pH of 6 and 4.5 respectively, while optimum Cr removal of 91.34 % from electroplating and 94.6 % from tannery effluents was found at pH 6.0 and 4.0 respectively. Pseudo second order model was found to best fit the kinetic data for all the metals as evidenced by their greater R2 values. FTIR characterization of biosorbent revealed the presence of carboxyl a

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Sun Mar 02 2008
Journal Name
Baghdad Science Journal
Three-Dimensional Microfabrication With Conjugated Polymers
...Show More Authors

In this paper we reported the microfabrication of three-dimensional structures using two-photon polymerization (2PP) in a mixture of MEH-PPV and an acrylic resin. Femtosecond laser operating at 800nm was employed for the two-photon polymerization processes. As a first step in this project we obtained the better composition in order to fabricate microstructers of MEH-PPV in the resin via two-photon polymerzation. Acknowledgement:This research is support by Mazur Group, Harvrad Universirt.

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 09 2018
Journal Name
Baghdad Science Journal
Conjugated Polymer (MEH-PPV:MWCNTs) Organic Nanocomposite for Photodetector Application
...Show More Authors

Fabrication of a photodetector consists of the conjugated polymer "MEH-PPV"- poly (2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenlenevinylene) and MEH-PPV:MWCNT nanocomposite thin film. The volume ratio investigated was 0.75:0.25. MEH-PPV was dissolved in chloroform solvent and doped with MWCNTs. The spin coating method was used to achieve a facile and low cost photodetector. The absorption spectrum decreases by adding the CNTs. The PL spectrum detected recombination curve results by doping the polymer with CNTs, and AFM measurement showed an increase of roughness average from (0.168 to 2.43nm) of "MEH-PPV" and "MEH-PPV:CNTs", respectively. The doping ratio 0.25, which has a higher photoresponsivity, was evaluated at 1.70 A/W and 2.14 A/W of th

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Mar 31 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Study of the Performance of Paraffin Wax as a Phase Change Material in Packed Bed Thermal Energy Storage System
...Show More Authors

The present work deals with an experimental investigation of charging and discharging processes in thermal storage system using a phase change material PCM. Paraffin wax was used as the PCM which is formed in spherical capsules and packed in a cylindrical packed column which acted as an energy storage system. Air was used as the heat transfer fluid HTF in thermal storage unit. The effect of flow rate and inlet temperature of HTF on the time of charging and discharging process were studied. The results showed that the faster storage of thermal energy can be made by high flow rate of heat transfer fluid HTF and high inlet temperature of heat transfer fluid. It was found that at 65°C HTF inlet temperature, the melting and solidification pr

... Show More
View Publication