The high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning electron microscopy (FESEM) images showed that the surface morphologies of the synthesized POPs were similar to coral reefs. They had grooved networks, long range periodic macropores, amorphous surfaces, and a high surface area (SBET = 82.71–213.54 m2/g). Most importantly, they had considerable carbon dioxide storage capacity, particularly at high pressure. The carbon dioxide uptake at 323 K and 40 bar for one of the POPs was as high as 1.42 mmol/g (6.00 wt %). The high carbon dioxide uptake capacities of these materials were primarily governed by their geometries. The POP containing a meta-phosphate unit leads to the highest CO2 uptake since such geometry provides a highly distorted and extended surface area network compared to other POPs.
الوصف New complexes of Cu (ll), Ni (II)„Co (II), and Zn (ll) with 2-amino-5-p-Flouro Phenyl 1, 3, 4-Thiadiazole have been synthesized. The products were isolated, studied and characterized by physical measurements, ie,(FT-IR)„UV-Vis and the melting points were determined. The new Schiff base (L) has been used to prepare some complexes. The prepared complexes were identified and their structural geometry were suggested
With the aim of developing potential antimicrobials, a series of new 5-fluoroisatin derivatives incorporated with different secondary amines (piperidine, morpholine, pyrrolidine, dimethylamine, and diphenylamine) for monomer, and (piperazine) in case of dimer Mannich bases, separately in presence of formaldehyde to obtain Mannich bases of 5-fluoroisatin derivatives, which then each Mannich derivatives reacts with phenylhydrazine to form Schiff bases as final products. The resulting compounds were characterized by two spectroscopic analyses; (Fourier- transform infrared) FT-IR and proton nuclear magnetic resonance spectroscopy (¹H-NMR). In addition, the in vitro antibacterial and antifungal activities were tested against some human pathogen
... Show MoreX-ray phase analysis was used to analyse the composition of Pb8Na(2±x)(PO4)6 (lead-sodium apatite structure) with different X values (X values refer to changes in the excess or lack of sodium (2±X) in the apatite structure): -0.15, -0.10, -0.05, 0.00, +0.05, +0.10, and +0.15. The ceramic method (solid-state reaction) was used to synthesize all samples at a temperature of 800 °C. Many programs, such as match software (v.3), PDF-4 database (ICCD), and database PDF-4 (ASTM), were used to study the single phases. The least-squares method was used to calculate the unit cell parameters. Results have shown that the following compositions: Pb8Na2(PO4)6<
... Show MoreNano gamma alumina was prepared by double hydrolysis process using aluminum nitrate nano hydrate and sodium aluminate as an aluminum source, hydroxyle poly acid and CTAB (cetyltrimethylammonium bromide) as templates. Different crystallization temperatures (120, 140, 160, and 180) 0C and calcinations temperatures (500, 550, 600, and 650) 0C were applied. All the batches were prepared at PH equals to 9. XRD diffraction technique and infrared Fourier transform spectroscopy were used to investigate the phase formation and the optical properties of the nano gamma alumina. N2 adsorption-desorption (BET) was used to measure the surface area and pore volume of the prepared nano alumina, the particle size and the
... Show MoreA new ligand ( 4- methoxy benzoyl ) carbamothioyl ) Glycine (MCG) is synthesized by reaction of (4- methoxy benzoyl isothiocyanate) with Glycine(1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized byFT-IR,UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(MCG)2] where M2+ = Mn, Co, Ni, Cu, Zn, , Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper complex is has square planer geometry.
A new ligand [N-(4-chlorobenzoyl amino) -thioxomethyl] valine (cbv) is synthesized by reaction of 4- chloro benzoyl iso thio cyanate with valine acid. The ligand is Characterized by elemental analysis ,FT-IR, and 13C 1H NMR spectra, some transition metals complex of this ligand were prepared and Characterized by FTIR , UV-Visible spectra , conductivity measurement's ,magnetic susceptibility , atomic absorption and determination of molar ratio (M:L), from results obtained , the following formula [M(cbv)2] where M+2 =Mn, Fe ,Co , Ni , Cu,Zn,Cd, and Hg and the proposed molecular structure for these complexes as tetrahedral geometry, except copper complex is have square planer geometry
The thermal evaporation technique was used to prepare the Ni-Cr films with a thickness of 200 nm and a rate of deposition of 0.22nm/Sec. The annealing was performed at 373 and 473 K. The structural and optical analyses of the grown layers were achieved and XRD patterns showed amorphous structure transferred to polycrystalline for film annealed at 373 and 473 K. AFM analysis showed that the surface of Ni-Cr films is homogenous and the average roughness, optical energy gap and absorption coefficient were increased with increasing annealing temperature (Ta).
In the present study a new synthesis method has been introduced for the decoration of platinum(Pt) on the functionalized graphene nanoplatelet (GNP) and also highlighted the preparation method of nanofluids. GNP–Pt uniform nanocomposite was produced from a simple chemical reaction procedure, which included acid treatment for functionalization of GNP. The surface characterization was performed by various techniques such as XRD, FESEMand TEM. The effective thermal conductivity, density, viscosity, specific heat capacity and stability of functionalized GNP–Pt water based nanofluids were investigated in different instruments. The GNP–Pt hybrid nanofluids were prepared by dispersing the nanocomposite in base fluid without adding any surfac
... Show MoreA series of 1,3-diarylprop-2-en-1-one oximes (7-12) were synthesized via reaction of 1,3-diarylprop-2-en-1-one (1-6) with NH2OH. HCl in dry pyridine. In order to produce the required products (13-18) as anti-isomers, these products (7–12) were then treated with acetic anhydride in dry pyridine. Different substitutes are maintained, resulting in the separation of different products in different yields The recently produced esters are thought to be useful as building blocks for the synthesis of substituted pyridines and many other nitrogen-holding complexes, which are elaborate structures in medicinal chemistry and present in a variety of pharmaceutical medications. The synthesized products were characteriz
... Show More