This research deals with a shrinking method concerned with the principal components similar to that one which used in the multiple regression “Least Absolute Shrinkage and Selection: LASS”. The goal here is to make an uncorrelated linear combinations from only a subset of explanatory variables that may have a multicollinearity problem instead taking the whole number say, (K) of them. This shrinkage will force some coefficients to equal zero, after making some restriction on them by some "tuning parameter" say, (t) which balances the bias and variance amount from side, and doesn't exceed the acceptable percent explained variance of these components. This had been shown by MSE criterion in the regression case and the percent explained variance in the principal component case.
This work bases on encouraging a generous and conceivable estimation for modified an algorithm for vehicle travel times on a highway from the eliminated traffic information using set aside camera image groupings. The strategy for the assessment of vehicle travel times relies upon the distinctive verification of traffic state. The particular vehicle velocities are gotten from acknowledged vehicle positions in two persistent images by working out the distance covered all through elapsed past time doing mollification between the removed traffic flow data and cultivating a plan to unequivocally predict vehicle travel times. Erbil road data base is used to recognize road locales around road segments which are projected into the commended camera
... Show MoreThe rise in the general level of prices in Iraq makes the local commodity less able to compete with other commodities, which leads to an increase in the amount of imports and a decrease in the amount of exports, since it raises demand for foreign currencies while decreasing demand for the local currency, which leads to a decrease in the exchange rate of the local currency in exchange for an increase in the exchange rate of currencies. This is one of the most important factors affecting the determination of the exchange rate and its fluctuations. This research deals with the currency of the European Euro and its impact against the Iraqi dinar. To make an accurate prediction for any process, modern methods can be used through which
... Show MoreAt the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena
... Show MoreAssociation rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.
The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreDecision-making in Operations Research is the main point in various studies in our real-life applications. However, these different studies focus on this topic. One drawback some of their studies are restricted and have not addressed the nature of values in terms of imprecise data (ID). This paper thus deals with two contributions. First, decreasing the total costs by classifying subsets of costs. Second, improving the optimality solution by the Hungarian assignment approach. This newly proposed method is called fuzzy sub-Triangular form (FS-TF) under ID. The results obtained are exquisite as compared with previous methods including, robust ranking technique, arithmetic operations, magnitude ranking method and centroid ranking method. This
... Show MoreBackground: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- secti
تمهيد
غالبا ما يكون تعامل المنظمات المالية والمصرفية مع الزبائن بشكل أساسي مما يتطلب منها جمع كميات هائلة من البيانات عن هؤلاء الزبائن هذا بالإضافة الى ما يرد اليها يوميا من بيانات يجعلها أمام أكداس كبيرة من البيانات تحتاج الى جهود جبارة تحسن التعامل معها والاستفادة منها بما يخدم المنظمة.
ان التعامل اليدوي مع مثل هذه البيانات دون استخدام تقنيات حديثة يبعد المنظمة عن التط
... Show MoreThis paper concerned with estimation reliability ( for K components parallel system of the stress-strength model with non-identical components which is subjected to a common stress, when the stress and strength follow the Generalized Exponential Distribution (GED) with unknown shape parameter α and the known scale parameter θ (θ=1) to be common. Different shrinkage estimation methods will be considered to estimate  depending on maximum likelihood estimator and prior estimates based on simulation using mean squared error (MSE) criteria. The study approved that the shrinkage estimation using shrinkage weight function was the best.
ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show More