Nowadays, cloud computing has attracted the attention of large companies due to its high potential, flexibility, and profitability in providing multi-sources of hardware and software to serve the connected users. Given the scale of modern data centers and the dynamic nature of their resource provisioning, we need effective scheduling techniques to manage these resources while satisfying both the cloud providers and cloud users goals. Task scheduling in cloud computing is considered as NP-hard problem which cannot be easily solved by classical optimization methods. Thus, both heuristic and meta-heuristic techniques have been utilized to provide optimal or near-optimal solutions within an acceptable time frame for such problems. In this article, a summary of heuristic and meta-heuristic methods for solving the task scheduling optimization in cloud-fog systems is presented. The cost and time aware scheduling methods for both bag of tasks and workflow tasks are reviewed, discussed, and analyzed thoroughly to provide a clear vision for the readers in order to select the proper methods which fulfill their needs.
Listeria monocytogenes represents a critical foodborne pathogen causing listeriosis, a severe infection with mortality rates of 20- 30%. This comprehensive review integrates cutting-edge research from 2015-2024 with Iraqi epidemiological data to address significant knowledge gaps in regional surveillance and global comparative analysis. Recent discoveries include five novel Listeria species in 2021, revolutionary whole genome sequencing (WGS) surveillance systems, and advanced understanding of RNA-mediated regulation. Iraqi prevalence data reveals concerning patterns with rates ranging from 3.5% to 93.8% across different sample types, substantially higher than global averages. Critically, Iraqi isolates demonstrate alarming antibiotic resis
... Show MoreDigital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show MoreThis review delves deep into the intricate relationship between urban planning and flood risk management, tracing its historical trajectory and the evolution of methodologies over time. Traditionally, urban centers prioritized defensive measures, like dikes and levees, with an emphasis on immediate solutions over long-term resilience. These practices, though effective in the short term, often overlooked broader environmental implications and the necessity for holistic planning. However, as urban areas burgeoned and climate change introduced new challenges, there has been a marked shift in approach. Modern urban planning now emphasizes integrated blue-green infrastructure, aiming to harmonize human habitation with water cycles. Resil
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreIn this study was undertaken frish fish such as Bigeye Ilisha megaloptera, Nematalos nasus, Suboor Hilsha ilisha and Carp Cyprinus carpio. they were purchased from local marketes in Basrah, Oil was extracted by a solvent extraction method on low temperature. And the level of oil obtiened about (6.08; 10.72; 13.52 and 5.61)% for Bigeye, Jaffout, Suboor and Carp. the Crud oils were compared with vegetable oil (olive oil) and animal fat (tial fat mutton).
The extracted oil from fresh complete fishs with compared oils intraed on pharmacological system through packed in capsul with and with out garlic`s extract. this system analysis with chemical tests.
Results were analyzed statistically by using the SPSS program with using (CRD)
The paper presents a highly accurate power flow solution, reducing the possibility of ending at local minima, by using Real-Coded Genetic Algorithm (RCGA) with system reduction and restoration. The proposed method (RCGA) is modified to reduce the total computing time by reducing the system in size to that of the generator buses, which, for any realistic system, will be smaller in number, and the load buses are eliminated. Then solving the power flow problem for the generator buses only by real-coded GA to calculate the voltage phase angles, whereas the voltage magnitudes are specified resulted in reduced computation time for the solution. Then the system is restored by calculating the voltages of the load buses in terms
... Show MoreResearchers are increasingly using multimodal biometrics to strengthen the security of biometric applications. In this study, a strong multimodal human identification model was developed to address the growing problem of spoofing attacks in biometric security systems. Through the use of metaheuristic optimization methods, such as the Genetic Algorithm(GA), Ant Colony Optimization(ACO), and Particle Swarm Optimization (PSO) for feature selection, this unique model incorporates three biometric modalities: face, iris, and fingerprint. Image pre-processing, feature extraction, critical image feature selection, and multibiometric recognition are the four main steps in the workflow of the system. To determine its performance, the model wa
... Show MoreAmong a variety of approaches introduced in the literature to establish duality theory, Fenchel duality was of great importance in convex analysis and optimization. In this paper we establish some conditions to obtain classical strong Fenchel duality for evenly convex optimization problems defined in infinite dimensional spaces. The objective function of the primal problem is a family of (possible) infinite even convex functions. The strong duality conditions we present are based on the consideration of the epigraphs of the c-conjugate of the dual objective functions and the ε-c-subdifferential of the primal objective functions.